IN THE BLACK: THE GROWTH OF THE LOW CARBON ECONOMY

THE CLIMATE GROUP
CONTENTS

IN THE BLACK: THE GROWTH OF THE LOW CARBON ECONOMY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>1</td>
</tr>
<tr>
<td>Preface</td>
<td>2</td>
</tr>
<tr>
<td>Overview</td>
<td>4</td>
</tr>
</tbody>
</table>

CHAPTER ONE: LOW CARBON POWER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highlights</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>Market Growth and Value Creation</td>
<td>7</td>
</tr>
<tr>
<td>Growth to Date</td>
<td>7</td>
</tr>
<tr>
<td>Major Players</td>
<td>8</td>
</tr>
<tr>
<td>Growth Projections</td>
<td>9</td>
</tr>
<tr>
<td>Country Level Overviews</td>
<td>11</td>
</tr>
<tr>
<td>UK</td>
<td>11</td>
</tr>
<tr>
<td>Germany</td>
<td>12</td>
</tr>
<tr>
<td>US</td>
<td>15</td>
</tr>
<tr>
<td>Japan</td>
<td>16</td>
</tr>
</tbody>
</table>

CHAPTER TWO: ENERGY-SMART PRODUCTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highlights</td>
<td>19</td>
</tr>
<tr>
<td>Introduction</td>
<td>20</td>
</tr>
<tr>
<td>Market Growth and Value Creation</td>
<td>21</td>
</tr>
<tr>
<td>Growth to Date</td>
<td>21</td>
</tr>
<tr>
<td>Major Players</td>
<td>22</td>
</tr>
<tr>
<td>Future Projections</td>
<td>24</td>
</tr>
<tr>
<td>Country Level Overviews</td>
<td>24</td>
</tr>
<tr>
<td>UK</td>
<td>24</td>
</tr>
<tr>
<td>Germany</td>
<td>25</td>
</tr>
<tr>
<td>US</td>
<td>25</td>
</tr>
<tr>
<td>Japan</td>
<td>27</td>
</tr>
</tbody>
</table>

CHAPTER THREE: LOW CARBON VEHICLE TECHNOLOGIES

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highlights</td>
<td>30</td>
</tr>
<tr>
<td>Introduction</td>
<td>31</td>
</tr>
<tr>
<td>Market Growth and Value Creation</td>
<td>32</td>
</tr>
<tr>
<td>Growth to Date</td>
<td>32</td>
</tr>
<tr>
<td>Major Players (Auto Industry and Biofuel Production Industry)</td>
<td>33</td>
</tr>
<tr>
<td>Growth Projections</td>
<td>34</td>
</tr>
<tr>
<td>Country Level Overviews</td>
<td>35</td>
</tr>
<tr>
<td>UK and Germany</td>
<td>35</td>
</tr>
<tr>
<td>US</td>
<td>36</td>
</tr>
<tr>
<td>Japan</td>
<td>37</td>
</tr>
</tbody>
</table>

CHAPTER FOUR: FINANCING THE SOLUTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>40</td>
</tr>
<tr>
<td>Part A: Global Finance – Introduction</td>
<td>41</td>
</tr>
<tr>
<td>Highlights</td>
<td>42</td>
</tr>
<tr>
<td>Market Growth and Value Creation</td>
<td>43</td>
</tr>
<tr>
<td>Growth to Date</td>
<td>43</td>
</tr>
<tr>
<td>Financing Stages and Major Players</td>
<td>43</td>
</tr>
<tr>
<td>Growth Projections</td>
<td>46</td>
</tr>
<tr>
<td>Part B: Global Carbon Markets – Introduction</td>
<td>48</td>
</tr>
<tr>
<td>Highlights</td>
<td>48</td>
</tr>
<tr>
<td>Market Growth and Value Creation</td>
<td>49</td>
</tr>
<tr>
<td>Growth to Date</td>
<td>49</td>
</tr>
<tr>
<td>Major Players</td>
<td>50</td>
</tr>
<tr>
<td>Growth Projections</td>
<td>53</td>
</tr>
</tbody>
</table>

Glossary of Terms

Sources

Acknowledgements

Supported by

[Barclays Logo]
The “Climate Group publishes this first edition of *In The Black: The Growth of the Low Carbon Economy* to showcase the rapid growth experienced by companies providing innovative low carbon products and services. Over the last year in particular, action on climate change throughout the global economy has stepped up a gear. This is fuelling the uptake of the technological solutions and the provision of related financial services.

In The Black reflects the diversity of companies both driving and benefiting from the shift towards the low carbon economy – including electricity generators, the car industry, manufacturers of high-efficiency electrical products and the financiers and professional services companies involved in the money and carbon markets. The fundamental message of this report is clear – the economic opportunities of developing low carbon products and services are vast, both in terms of revenues and job creation.

In The Black provides an overview of the ‘supply-side’ of low carbon solutions, and builds on the ‘demand-side’ illustrated by the mass of pro-active organisations whose activities in emissions reductions were reported on earlier this year in the third edition of *Carbon Down Profits Up*. The “Climate Group was able to select from a host of organisations and choose only those demonstrating the most positive results in emissions reductions. *Carbon Down Profits Up* is testament to the fact that the benefits of early action far exceed the cost of doing nothing, while *In The Black* drives home the message that the low carbon economy is really the only place to be for any company with an eye to its future.

While not suggesting that mitigating global climate change will come without costs, it is clear that these will be outweighed by the benefits and that for many sectors the dichotomy between environmental protection and economic growth is a false one. *In The Black* demonstrates that action on climate change is more than ever a value proposition – emerging business strategies and entirely new companies across the economy have identified the advantages of offering low carbon products and services. The competitive edge these provide will support the upward spiral of growth within the exciting Low Carbon Economy.

STEVE HOWARD, CEO, THE “CLIMATE GROUP”

JOHN VARLEY, GROUP CHIEF EXECUTIVE, BARCLAYS BANK PLC.

MAY 2007
RENEWABLES PROJECTED TO SUPPLY 20% OF GLOBAL POWER BY 2020, UP FROM 4% NOW*

*EXCL. LARGE HYDRO
This report is the inaugural publication of a new series that The Climate Group is launching, tracking the growth opportunities, jobs and value created by companies and organisations that are ‘enabling’ the shift towards a low carbon economy.

As the uncertainties around the science of climate change have been reduced, the terms of the debate have shifted to the costs of dealing with mushrooming emissions of greenhouse gases. There is a growing body of evidence that suggests that many of these costs – and the massive investment in technology needed – are being overblown and that, within a context of growing policies, incentives and consumer demand, a robust and profitable low carbon economy is emerging. In The Black aims to document the green shoots of this new low carbon world.

The pathway to a low carbon economy was described in a framework provided by a seminal 2004 Princeton University study1 (see Focus). It describes technological options to stabilise greenhouse gas emissions at 7 gigatonnes of carbon (GtC) per year (the 2004 emissions level) until 2054, during which time they would be expected to double, aiming to reach a level that scientists believe should avoid the worst effects of climate change.

The first three chapters of In The Black focus on three areas key to these wedges of carbon reductions: Low Carbon Power, Energy-Smart Products and Low Carbon Vehicle Technologies. The fourth chapter looks at the financing solutions and market creation required. Initially, we have focused on four countries – the UK, Germany, the US and Japan – but in future editions we will include other countries leading in specific areas.

Finally, a note on the data in this report: given the recent nature of the technologies and markets covered, it has been difficult to find consistent data that allows comparison between and across sectors and any data is time-limited in its accuracy. The broad brush nature of In The Black also means that we have had to exclude some detailed data. We will, however, publish more of this on our website and believe that, as the first attempt to draw data on the low carbon economy into one digestible report, the information provides one clear message: the shift away from a carbon intensive present to a clean low carbon future is an exciting one, full of opportunities and economic potential. We hope you agree.
The global economy is on the verge of a revolution. The growing scientific alarm about global warming – further underlined in the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report – has concentrated minds around the need to cut man-made emissions of greenhouse gases (GHGs). This is increasingly being met with a policy response designed to encourage a shift in economy to be every day from a dependence on fossil fuels, and towards a low carbon future. And companies from all sectors are responding too – not yet on a scale commensurate with the problem but in a way that demonstrates that action to mitigate the build-up of GHGs in the atmosphere can bring economic, social and environmental benefits.

In The Black: The Growth of the Low Carbon Economy highlights the startling growth generated by the companies active in renewable energy, biofuels, the manufacture of energy-smart products and low carbon vehicles, and the emerging clean energy and carbon trading markets. These companies – and the growth in revenue, profits and jobs they are generating – are in turn exciting interest from investors and financial institutions that recognise these companies’ growing need for capital, and the opportunities for value creation they present. And these are no longer niche markets for a handful of specialised risk-loving investors; major pension funds, insurance companies and investment banks are ploughing money into what are currently the most dynamic sectors of the world economy.

This should not come as a surprise. Numerous recent pieces of research have suggested that much of the challenge of cutting GHGs to safe levels can be met with existing technologies at little or even negative cost. Pacala and Socolow’s 2004 work on the ‘Princeton Wedges’ showed how GHG emissions could be stabilised at current levels – a first step towards the deeper reduction required – using currently available technologies. More recently, work by McKinsey and Vattenfall indicates that at least a quarter of the required emissions reduction can come with a positive economic benefit and that we can avoid dangerous global temperature increases with measures costing less than €40 a tonne of CO₂ (carbon dioxide equivalents).

In total, the cost is likely to be far less than the world spends on defence or insurance and around a third of the estimated impact of recent oil price rises. Moreover, these are solutions that can be adopted now; nearly three-quarters of them require little or no additional R&D investment.

These are the opportunities being grasped by a growing band of entrepreneurs and investors. It is becoming increasingly evident that shifting towards a low carbon economy offers substantial economic benefits. Such an economy has been suggested by the Stern Review to be eventually capable of providing as much as US$2.5 trillion a year in economic benefits, with the global environmental market projected to be around US$700 billion by 2010 (or roughly equivalent to the aerospace or pharmaceuticals markets today). In The Black shows how this is happening on the ground, taking as examples Germany, Japan, the United Kingdom and the United States and focusing on low carbon power, energy-smart products, low carbon vehicle technologies and the financial services that underpin them. And the evidence we have found is dramatic. The response to the challenge of global climate change has to have been inadequate, with the costs of action seen as a major impediment. In The Black and Carbon Down Profits Up show that this is not the case. With courage, vision and ingenuity, leaders can lay the foundations for a low carbon economy that marry’s economic efficiency and sound stewardship of the earth’s climate – in other words, follow the lead of the pioneers showcased in this report. In all cases, low carbon sectors are growing faster than the surrounding economy, generating better returns and creating more jobs per dollar, euro or yen invested.

These findings and the examples presented in this report illustrate the range of opportunities presented by the low carbon economic revolution. For this to be successful, corporate innovation and leadership is paramount, supported by the correct market incentives and regulatory regimes. There are also some other emerging characteristics of this revolution, which are worth drawing attention to:

- Low carbon business strategies, particularly those focused on promoting energy-efficiency within individual businesses, can significantly boost productivity, including increased product output, shorter process cycle times, increased reliability in production, improved product quality, improved working environments, and better morale among workers.

- Energy-efficiency policies tend to go hand in hand with securing jobs and increasing employment.

- Reducing GHG emissions is linked to other significant environmental benefits, particularly in the area of air pollution, but also more generally in cutting waste.

- Partnerships within and across sectors are already and will increasingly be crucial if the initiatives reported here are to be both deepened and scaled up. Indeed, many of the successes of In The Black are based on the creation of such partnerships, be they formal or informal; those between local governments, fuel producers and vehicle manufacturers in the case of low carbon fuels and between tax authorities, financial institutions and energy companies for the promotion of energy-smart solutions being but two examples.

We hope that this report will help inform the corporate leaders of today and tomorrow, and the policy-makers who will be responsible for creating the regulatory landscape in which they operate.
Power generation contributes more than 40% of global carbon dioxide (CO₂) emissions annually, and with global energy demand projected to grow by more than 50% between now and 2030, CO₂ emissions could increase 55% compared to 2004 levels.

The search for low or zero-carbon power supplies therefore presents one of the greatest challenges – and one of the greatest opportunities – in tackling climate change. The centrality of the challenge was recognised by the leaders of the EU in March 2007 when they agreed a mandatory EU-wide target of meeting 20% of the bloc’s electricity demand from renewable sources by 2020. The effort is, however, underpinned by other drivers beside the environmental imperative – security of supply and rising and volatile energy prices are also key concerns for many governments.

Zero-carbon power solutions, with the potential of providing up to 5GtC annual emissions reductions by 2050, include renewable energy, hydrogen and carbon capture and storage (CCS). Of the many forms of renewable power, the two renewable technologies with the most potential for widespread scale-up are wind electricity and solar power. Both solar and wind power are highlighted in the Princeton University study as being capable of providing 1GtC each of the required reductions by 2050.

The good news is that the wind and solar power industries are already thriving, with double-digit growth in annual installation, and deployment has brought with it significant net economic benefits.

The Princeton study also highlighted the potential for hydrogen and CCS, in providing up to three of the 1GtC wedges. These options include the further development and use of hydrogen as a fuel for power generation, and the use of carbon capture and storage both in fossil power generation and in hydrogen stations – these are exciting significant interest and, at least for the former, examples of cost-effective uptake are beginning to be seen.
Focus: Wind Power

Wind power is currently the most mature non-hydro renewable energy technology. More than 15GW of new wind energy development in 2006, in more than 70 countries around the world, brings the total of installed wind energy capacity to 74.2GW. Germany and the US have the highest amount, with 20.6GW and 11.6GW respectively. The UK, meanwhile, recently passed the 2GW mark.

About two-thirds of current global capacity is in Europe, including 7.6GW installed in 2006, at a cost of €9 billion. This represented an increase of 23% compared to 2005. However, in terms of the rate of new installations in 2006, the US led with 2.5GW, followed by Germany, at 2.2GW. The chart to the left illustrates the 20%–plus annual growth rate in global wind installation over the past few years, and in particular, the 27%–plus global wind capacity growth rate for the last three years.

The wind industry delivered a 32% increase in installed capacity in 2006 despite supply chain constraints. The total value of new generating equipment installed in 2006 reached €18 billion, or US$23 billion.

Focus: Solar Power

While much smaller in terms of installed capacity, solar is set to play a fast-growing role in tackling climate change – and solar energy companies have recently delivered substantial returns to investors. In 2005, 1GW of new grid-connected solar capacity was installed worldwide, representing a 60% growth rate. At the end of that year, solar had reached more than 5GW in installed capacity. In total, about 90% of solar photovoltaic (PV) installations were in Europe (mainly Germany), US and Japan. These countries have dominated the global PV market and, driven by generous government subsidy programmes, should continue to lead until 2010.

Germany stood out by 2005 with 57% of the global market for PV, up from 50% just one year previously, while Japan, which was the largest market in 2003, now stands at only 20%; the next largest country market is the US, at 7%.

In terms of growth in corporate value, the estimated 2006 year-end market capitalisation in the global solar sector was US$22 billion, up from US$6 billion a year earlier. This increase was partly due to three large solar Initial Public Offerings (IPOs) in 2005: Q-Cells, SunPower and Suntech Power, which raised a total of US$800 million on the Frankfurt, NASDAQ and NYSE exchanges, where they were respectively listed, and by the end of their first trading day, their capitalisations exceeding US$1.5 billion.

Between 2003 and 2006, the combined average growth rate of the market capitalisation of the solar sector was 290%. By the end of 2006, the solar PV industry was expected to have invested record amounts in new plant and equipment, about US$8–9 billion. Investments by the end of 2010 in Germany’s solar PV industry alone are expected to reach US$20 billion.

While support programmes encourage retail uptake of small-scale systems, larger installations are becoming more attractive to corporate consumers. Costs have come down and new business models have evolved to support this uptake – see case study below.

Case Study: Innovative Partnership for Solar PV – Staples and SunEdison (US)

When evaluating options for on-site power generation, many companies have in the past declined to install solar PV systems due to their high capital costs and financial rates of return that typically fall below minimum requirements. As a result, many large power consumers have opted for other clean energy choices, such as wind.

Staples is one of the first major corporations to utilise the ‘solar services business model’, in which the power customer hosts an on-site generation system and purchases its power but does not own it. In return, Staples signed a 10-year, fixed-price power purchase agreement (PPA) with SunEdison, which arranged the financing, design, equipment supply, and construction of both arrays. In return, Staples signed a 10-year, fixed-price power purchase agreement (PPA) with SunEdison, with the option to renew at five year intervals. Hudson United Capital, an investment company specialising in renewable energy projects, helped to which the equity. The PV units were manufactured and installed by BP Solar.

The solar services model provides Staples with several benefits. The PV systems reduce the amount of power Staples buys from its retail electricity provider during the peak hours of the day. They reduce the company’s greenhouse gas emissions, helping Staples to meet one of its major environmental goals. The negotiated price for power is competitive with market rates, and the fixed price provides a hedge against retail electricity price increases. Furthermore, Staples avoids capital expenditures and maintenance costs for the PV system.
Chapter One: Low Carbon Power

MARKET SHARE: SOLAR PV MODULE PRODUCERS (2005)

1. SHARP 28%
2. KYOCERA 11%
3. SANYO ELECTRIC 8%
4. MITSUBISHI ELECTRIC 7%
5. SOLON 5%
6. MSK 4%
7. SHELL SOLAR 3%
8. BP SOLAR 3%
9. SOLARWATT 3%
10. ISOFOTON 3%
11. OTHERS 28%
TOTAL 100%

MAJOR PLAYERS

The wind industry is relatively concentrated, with the top 10 wind turbine suppliers in 2005 claiming more than 95% market share (see table to the left).31 Likewise, the solar PV manufacturing industry is concentrated among the top 10 PV cell and module producers with 80% and 70% of the world’s market respectively (see tables below and to the right).

— JAPAN’S SHARP AND KYOCERA INCREASED THEIR PRODUCTION OF SOLAR PV CELLS BY MORE THAN 30% IN 2005.32
— GERMANY’S Q-CELLS, THE TOP EUROPEAN SOLAR PV CELL PRODUCER, MORE THAN DOUBLED PRODUCTION IN 2005.33
— SOLARWORLD AG ACQUIRED SHELL SOLAR IN JULY 2006 TO BECOME THE WORLD’S THIRD LARGEST SOLAR POWER COMPANY (SEE GROWTH STORIES: SOLARWORLD AG PAGE 12).

NEW ARRIVAL: CLIPPER WINDPOWER (US)

Clipper Windpower is a rapidly growing wind energy technology, turbine manufacturing, and wind project development company. With offices in California, Colorado, Maryland, Mexico and the UK, and manufacturing and assembly facilities located in Iowa, the company designs advanced wind turbines, manufactures its 2.5MW Liberty wind turbine and actively develops wind power generating projects in the Americas and Europe. Clipper’s project development activities include approximately 6,000MW of wind resource rights, with new project sites being actively pursued. In September 2005, Clipper was listed on the London Stock Exchange’s Alternative Investment Market (AIM), raising just over US$85 million. Since the listing, the company has become the best performing renewable energy stock on AIM. Shares in Clipper jumped more than 75% in July 2006 when the company announced a deal with BP to jointly develop five wind farms in the US.34
While the renewable energy space is spawning technology start-ups, niche developers, and fast-growing equipment manufacturers, the sector is also providing opportunities to more established players. Several of the companies noted here are conglomerates, with industrial divisions focusing on R&D, installation and scale-up of many different energy technologies. As it is impossible to predict which technologies are to be the most successful in the future, a number of companies, such as Mitsubishi, BP, Shell and GE are hedging their bets somewhat by taking a portfolio approach.

To take two examples:

GE is the world’s second largest company, and one of the leading suppliers of power generation and energy delivery technologies. Its 2005 sales reached US$150 billion with net earnings of US$16.4 billion. The company has created a new product range called Ecomagination, which gathers together all its products with environmental and energy-efficiency benefits, including wind turbines. This had generated revenues of US$10 billion by mid-2006, following just one year’s stand-alone operations. The 38 products it currently offers in the Ecomagination range are to increase to 60 by 2007. US$1.5 billion of GE’s R&D budget will be committed to this segment annually by 2010. In February 2007, GE signed a deal to hand over its 165MW of German wind farms to a French developer called Theolia in return for an equity stake of up to 22%, and it is also buying a 70% stake in the Class A equity of six wind farms of 410MW in the US. The company is developing a diversified energy strategy. **BP** is one of the world’s largest energy companies, with interests in more than 100 countries and more than 96,000 employees. BP Alternative Energy was formed in 2005 and brings together all BP’s interests in low carbon technologies. It combines fossil fuel power generation with carbon capture and storage; and BP’s natural gas-fired power interests. BP Alternative Energy has an active wind development portfolio in Europe, North America and Asia; the company’s hydrogen business includes two announced projects (in Los Angeles and in Peterhead, Scotland).

GROWTH PROJECTIONS

Wind power generation is expected to almost double between 2006 and the end of 2009, reaching a total installed capacity of 124GW, and close to double again by 2012, to 200GW. To put this in context, 200GW would provide enough power for more than 100 million homes in Europe, from a total in the EU-25 of c.195 million.

In terms of the global power generation mix, wind is likely to achieve the biggest percentage increase in market share, from 0.5% now to 3.4% in 2030.

The global solar PV industry is also expected to expand manufacturing capacity by several hundred MWs, to potentially 2GW during the period from 2006 to 2008, and up to 3.9GW in 2010. By 2010, worldwide solar industry revenues are forecast to reach US$18.6-23.1 billion, virtually doubling in five years, from US$12 billion in 2005 (see Case Study: UK Wind Developer Green Peninsula Sees High Growth in Demand).

Drivers of distributed energy take-up include a desire among high-energy users to control their own power supplies. Momentum on the introduction of carbon-pricing via tax or trading is unstoppable and companies recognise that both energy and carbon represent a business risk. Many are now looking to future-proof themselves against energy-price volatility. A further benefit to the use of renewable energy, is the positive impact on reputation, experienced by those companies who choose to install highly visible wind turbines or solar panels.

The projected growth of the renewables industry, due to the current support measures in place, is expected to give rise to a net increase of hundreds of thousands of jobs in the EU by 2020 (of which 70% will be in the renewables industry – mainly wind – and 30% in agriculture – mainly producing feedstocks for biofuels). In Germany alone, 100,000 jobs in renewables are expected to come online by 2020. In terms of the proportion of the labour force supporting renewable energy by 2010, it is projected to reach up to 1% in the EU as a whole, more than employed in the entire electricity, gas and water supply industries in 2005. Job creation in the US is expected to reach 50,000 by 2010.

CASE STUDY: UK WIND DEVELOPER GREEN PENINSULA SEES HIGH GROWTH IN DEMAND

Green Peninsula is a specialist development company that helps businesses and organisations make the transition from passive consumers to active generators of green power – primarily from large wind turbines on their own land. The company provides a complete project development service from initial feasibility studies through to operation. The need has arisen as business has become increasingly focused on environmental issues – in particular climate change. Large turbines are a graphic demonstration of green credentials. Recent fluctuations in energy prices have also been a key driver as wind generation offers an opportunity to hedge against fluctuations in fuels and electricity prices.

Longer term, Green Peninsula says it makes sense that companies generate their power close to where they are using it. The company currently has a 2MW turbine site in planning for its major retail client Asda at a refrigerated distribution depot at Falkirk, which has met with a positive response from the local community.

As well as increased levels of control over energy prices for high energy users, another major bottom-up driver for the uptake of distributed generation includes the property development market, which has challenging targets to reduce energy use. Low carbon developments with renewable energy requirements are becoming more common – the UK government is keen to progressively tighten building codes in order to achieve zero-carbon new buildings by 2016. Many property developers are therefore in talks with renewables providers.

The wind industry and wind turbine technology has matured significantly this decade, and is the fastest growing of the new renewable technologies. Demand for turbines has in fact outstripped supply and many customers have been told they will have to wait up to two years for turbines. Particularly noticeable has been the US market growth, which has been hoovering up turbine output, and in the first-quarter of 2006, turbine prices went up by 25%. Commodities and parts prices have now levelled off somewhat – manufacturers are rapidly building plants in China and buying up the component supply chain to increase vertical integration.
UK: WIND TURBINES CAN NOW GENERATE ENOUGH POWER FOR 1.1 MILLION HOMES
In February 2007, operational wind capacity in the UK passed the 2GW milestone, meaning that the UK has now joined only seven countries in the world with 2GW or more of installed wind turbine capacity. Turbines can now generate sufficient electricity for 1.1 million homes and it is expected that total cumulative wind capacity will have increased threefold by 2010, to reach 6GW.

Solar power generation capacity, on the other hand, is still very limited, with just 10.7MW installed at the end of 2005. While Germany is on course to install up to 12GW of solar PV capacity by 2012, the UK – which has a similar sunshine profile to Germany – could also produce 12GW of solar electricity by 2023 (the same amount as its current nuclear generation capacity) if production is expanded by 40% per year, less than the world increase of 57% in 2004.

However, in contrast to other developed countries, the UK has curtailed its major PV demonstration programme. The programme to install roof panels ran from 2002, ending in March 2006 after a total spend of £31 million for only 3,500 roofs. However, this has been replaced by the Low Carbon Buildings Programme, which allocates grants for a range of building-related micro-generation technologies, and reports a high demand from applicants.

DRIVEN BY

— Concerns over energy security and increasing reliance on non-domestic gas.
— 10% target for renewables in power generation by 2010 – via the 2002 Renewables Obligation (RO).
— A recent extension of the RO to a 20% target by 2020, providing longer-term stability to the renewables industry.
— The 2001 Climate Change Levy (a tax on the use of fossil fuels) encouraging companies to undertake carbon-reduction strategies in exchange for an 80% reduction in the CCL. A total of 3,000 such Climate Change Agreements have been entered into, which will cut emissions by six million tonnes a year by 2012.
— The proposed climate change bill will continue to drive progress, aiming for a 60% cut in emissions by 2050.

Together, the Renewables Obligation and the Climate Change Levy will help support green power markets of £1 billion a year by 2010, and demand for these new technologies has supported significant job creation. The 17,000 firms that constitute the UK environmental industries sector, including energy, employed 400,000 people in 2004, up from 170,000 in 2001.

Collectively, these companies were worth £25 billion in 2004, up from £16 billion in 2001, and projections are for them to increase in value to £34 billion by 2010 and to further rise to £46 billion by 2015, employing an additional 100,000 workers. The total number of jobs will comprise nearly 1.8% of the entire UK workforce, the same as employed now in all agriculture, fishing, forestry, mining and quarrying activities combined.

These high rates of growth compare with the overall rate of growth of the UK economy of 2.7% in 2006, and 1.9% in 2005. The offshore wind industry alone will employ up to 19,000 people within the next 10 years, according to the British Wind Energy Association.

Scotland, in particular, is playing a crucial role in the future expansion of renewables given its large marine and wind resources – the forecast is for 3.4GW of the UK’s total expected 6GW in wind power to be installed in the country. The Scottish renewable energy sector encompasses approximately 2,000 businesses including multinationals, large Scottish global companies, and a strong SME base. Estimates put output at £63 million, with direct employment of 1,500; these figures are forecast to rise to £353 million of output and 8,600 jobs by 2015.
GERMANY

RENEWABLES SUCCESS

As of the end of 2006, Germany’s installed wind energy capacity exceeded 20GW, up from 18.4GW in 2005 (representing a 30% share of the world’s capacity and 45% of Europe’s). In 2006, the sector generated 5.7% of Germany’s electricity. Despite having only a fraction of the US potential for wind power, Germany has more than twice as much installed capacity, as the country has led the way in installing and developing wind power since the 1990s.

Furthermore, some 40 German offshore projects are planned, including a 400MW offshore wind farm due to start construction in 2008/9. By 2030, offshore wind will provide up to 25GW of capacity, from up to a third of all European offshore wind facilities.64

Solar PV capacity now stands at 1.54GW (a 50% share of the world’s capacity and 86% of Europe’s). In 2005, Germany became the world leader in solar PV installations, surpassing the former leader Japan, when a new total of 837MW of solar PV capacity came online.65 Up to 2008, annual installation of PV capacity in Germany increased almost thirtyfold to 363MW, and system price has decreased by more than 20% since 1999.

It is predicted that Germany will have 12GW of PV generating capacity by 2012, or the same capacity as the entire of the UK’s nuclear power plant fleet, if it continues to expand its solar energy programme at the present rate.

DRIVEN BY

— A goal for 12.5% of power generation to come from wind and other renewables by 2010.
— Moves to cut reliance on foreign sources for energy – Germany imports all of its uranium for its nuclear power plants, and more than 83% of its natural gas.
— Provision of support to grow successful industries to create jobs and economic wealth, in response to an average unemployment rate of 12%.
— The 2004 introduction of high feed-in tariffs under the German Renewable Energy Law (EEG), proving the most successful renewables support system implemented in Europe.
— The 100,000 roofs programme, providing low-interest credits for the operators of solar systems.

CREATING DOMESTIC VALUE

A significant amount of national renewables capacity is manufactured and installed by between 800 and 1,000 domestic companies.58 Germany has 10% of the global renewables workforce, with 170,000 people, and renewable energy is the country’s number one job creator. Between 2004 and 2005, employment rose by 13,000, an 8% increase, against a backdrop of 12% unemployment. 100,000 new jobs are expected to come online by 2020.

Furthermore, skills developed by Germany’s renewables industry are highly valued and have created significant opportunities in the export of goods and services relating to renewables.59 For example, German turbine manufacturers and suppliers produced over half of the turbines and components manufactured worldwide in 2004.

With a turnover of €4.5 billion in 2005, the wind industry is a major employer in the German renewables landscape, with 64,000 jobs60 at the end of 2004 accounting for more than 40% of all renewables jobs in the country. Another 10,000 jobs are expected to be created by the ongoing development of the offshore wind industry.61

As of 2005, the solar industry (comprising production, installation, trade and maintenance) employed 30,000.62 Annual turnover in the solar sector reached €3 billion in 2005,63 up from €1.5 billion in 2004.64 Double-digit growth is expected in the solar industry in Germany in the coming years. In fact, two of the world’s three largest solar companies, Q-Cells and SolarWorld, are based in Germany and the country is the second-largest producer of cells and modules in the world, accounting for 23% and 18% respectively in 2005.65

GROWTH STORIES: SOLARWORLD (GERMANY)

SolarWorld, headquartered in Bonn, was founded in 1999 as a distributor of solar PV modules. Gradually, the company evolved into a fully integrated solar energy company, having added to its operations cell and module production, ‘plug and play’ system marketing, as well as development and installation of solar projects.

Among the numerous divisions of SolarWorld, Deutsche Solar is the largest wafer manufacturer in Europe, while Deutsche Cell had almost tripled its PV cell manufacturing capacity to 160MW by the end of 2006 from 60MW at the end of 2005. In July 2006, SolarWorld acquired Shell Solar’s crystalline-silicon solar business, which makes solar-grade silicon, wafers, cells and modules in California, Washington and Germany, becoming the world’s third largest solar energy company. In 2005, before acquiring Shell’s solar assets, the company employed 760 staff and it created an additional 140 jobs in 2006. Together with Shell Solar, the combined company now employs a total of 1,300 people.66

Prior to the acquisition of Shell Solar, SolarWorld’s revenues had grown on average by 40% a year since 2000. In 2004, helped by the introduction of EEG, Germany’s renewable energy law, the company’s sales doubled. It is forecast that the company will continue to enjoy robust sales growth of more than 30% each year to 2010. Moreover, 2007 revenues are expected to increase 43%, to US$630 million, which after Shells acquisition, would make the company the second largest integrated solar company in the world.
Germany: Renewable energy is the number one job creator. 100,000 new jobs are expected by 2020.
US:

RENEWABLES TO GROW FASTER THAN ANY DOMESTIC ENERGY SOURCE – US$3.5BN INVESTED JUST IN 2005
Chapter One: Low Carbon Power

Renewables Success

Compared to the EU, the US had been lagging in terms of wind power, with just a third of the former’s capacity. However, there has been a significant shift in the balance of the global market for renewables – the size and resources available to the US makes it a strong draw for domestic and foreign players. As an illustration, US$3.5 billion was invested in US renewable energy generating capacity in 2005, making it third in the world for investment after Germany and China.

Today, renewable resources provide just over 6% of total US power, and renewable domestic power production is expected to grow at a higher growth rate than any other domestic energy source. In 2006, US wind capacity grew by 27%, as developers installed 2,454MW of new wind plants, investing approximately US$4 billion. Capacity is forecast to grow another 26% during 2007.

California has the most ambitious renewable goals in the country and already gets 12% of its power from non-hydro renewables. However, Texas is now the most active state for wind development; the state accounted for one-third of wind development in 2006 and has 2.8GW of wind generation installed, compared with 2.4GW in California. Texas is also home to the largest US wind farm, the 735MW Horse Hollow Wind Energy Centre.

The US is also the third largest producer of solar PV cells and modules globally.

Driven by

- The 2005 national energy bill, providing tax concessions for the purchase of equipment and renewables generation plant.
- The Production Tax Credit, established in 1992 and recently extended to the end of 2008, which provides 1.9 cents/kWh of renewable power generated.
- Renewable portfolio standards, adopted by 13 US states, require retail electricity suppliers to supply a certain minimum from renewables.
- Government R&D budgets – the solar PV industry has received US$170 million in public-private partnerships to help make solar PV cost competitive by 2015.
- All but four US states have incentives in place to promote renewable energy. More than a dozen have enacted new renewable energy laws in the past few years, or strengthened targets. For example, California’s governor has set a new goal requiring utilities to obtain 33% of their power from renewable sources by 2020, and the ‘California Solar Initiative’, a US$3 billion programme, aims to foster the development of 3GW solar PV capacity in the US state by 2017.

Creating Domestic Value

Employment levels in the US just for construction and installation of renewable energy technology reached 125,346 by the end of 2005 – and the country could add between 240,850 and 355,000 new jobs if it generated 20% of its electricity from renewables by 2020.

When compared with fossil fuel generation, renewable energy is the greater job creator. For example, the solar industry creates 5.65 jobs per million dollars in investment (over 10 years), the wind energy industry 5.7 jobs, and the coal industry only 3.96. Furthermore, employment in the coal industry has been in steady decline for many years, due to growing automation of coal mining and other processes. Between 1980 and 1999, while US coal production increased 32%, related employment declined 66%, from 242,000 to 83,000 workers. The coal industry is expected to lose an additional 30,000 jobs by 2020, even if coal demand continues to rise.

It is also likely that manufacturing jobs in the renewable industry would go to the states that have suffered the greatest job losses over the last decade, including California, Ohio, Texas, Michigan and Illinois. In fact, the 20 states that would attract the most wind manufacturing jobs account for 76% of manufacturing jobs lost. In addition to direct jobs in the industry, clean energy also has the potential to support rural development in the US up to a potential total of US$1.2 billion in new income for landowners and farmers from wind turbine revenues.

US states currently with the greatest amount of renewable technology manufacturing, installation and supporting activities include California and Massachusetts. These clusters of activities help to brand an industry, raising its profile for investors, entrepreneurs and consumers.

- The Northeastern US, including Massachusetts, attracts 25% of the total US venture capital investment in clean energies – parts of the industry are growing at annual rates of between 25% and 35%. In 2002, 40 core clean energy firms reported annual growth rates of 40% to 77%. By comparison, the textiles and apparel industry, a key industry in Massachusetts, lost 7% of its jobs in recent years as a result of globalisation.

- California attracts c.29% of the national venture capital for clean technologies and the industry employs 170,000 people. Estimates for job creation in California from renewable energy include a construction employment rate ranging from 2.57 jobs/MW for wind to 7.14 jobs/MW for PV, and an operating employment rate ranging from 0.12 jobs/MW for PV to 2.28 jobs/MW for landfill gas.
**JAPAN
RENEWABLES SUCCESS**

Japan was one of the first countries to adopt a range of policies and incentives to support the development of renewable energy, driven mainly by the aim of achieving greater energy independence. Until 1997, Japan’s renewable energy policies focused on public-private collaboration for R&D, primarily for PV and wind power. The only significant non-R&D programme before 1997 was the ‘10,000 Roofs Programme’, a successful subsidy programme funded by electricity surcharges to pay one-third of the installation costs of household PV, with utilities purchasing any excess power at the retail price of electricity. The ‘New Energy Law’ of 1997 focused on technology deployment with the goal then that 3.1% of Japan’s primary energy supply would come from renewables by 2010. The primary method of implementation featured powerful requirements on energy suppliers to buy electricity generated by renewables.

The country saw a fourfold increase in power generation from renewables between 1992 and 2000. Installed wind capacity has now reached 1.23GW, of which 240MW was installed in 2005 alone. Japan hopes to more than double its total installed wind capacity to reach 3GW by 2010. The country is also the second largest producer of solar cells and modules, and uses more solar cells than any other country. It has already completed the installation of solar panels on 70,000 roofs.

DRIVEN BY

- The New National Energy Strategy, released in May 2006 and focusing on energy security and meeting Japan’s Kyoto targets.
- Support measures from the national government’s New Energy and Industrial Technology Development Organisation (working on activities to promote new energy and energy conservation technology and now also responsible for R&D project planning), and the New Energy Foundation (working to promote energy diversity and security).
- The Renewable Portfolio Standard, requiring electricity suppliers to source a percentage of power from wind, solar, biomass, medium/small hydro and geothermal energy. The target is for 12.2TWh or 1.35% of electricity to be provided from these renewables by 2010.
- A tax credit programme that has accelerated market adoption and helped lower costs through volume.
- Government subsidies, available for field testing or promotion of certain renewable technologies such as solar or fuel cells.
- Net metering arrangements allowing consumers to sell back excess supplies in return for a guaranteed premium – instrumental in inspiring consumer interest in solar power.

CREATING DOMESTIC VALUE

More than US$2 billion was invested in renewables in 2005, and more than 3,400 jobs created by the renewables sector.

Some of Japan’s top companies have carved out world-leading businesses in renewable energy. Since the 1980s, Mitsubishi has pioneered the development of high-efficiency wind turbines that make wind power generation more productive and profitable. Currently, more than 1,380 Mitsubishi wind turbines are in operation worldwide, providing 587MW.

Sharp began developing solar cells in 1959, reaching mass production in 1963. The company now makes a range of PV systems and solar cells, tailored to specific applications, from several materials, such as silicon (single-crystal, polycrystalline and thin-film) and compounds. It leads the market in PV power systems for housing and industry, and is the world’s largest producer of solar cells, producing 428MW in 2005 alone, up from 324MW in 2004.
JAPAN: FOUR OF THE WORLD’S FIVE LARGEST MAKERS OF SOLAR PANELS ARE JAPANESE, WITH SHARP THE WORLD LEADER.
Chapter One: Low Carbon Power

Hydrogen Power and Carbon Capture and Storage (CCS)

Hydrogen is not a fuel per se, but is classified as an energy carrier, like electricity. It requires energy to form it – either through splitting water into its components of hydrogen and oxygen using renewable energy (in the best-case scenario) or through reforming hydrocarbons such as gaseous methane or gasified coal, or liquid methanol (created from biomass). Hydrogen can be burnt in large power plants just as methane is used in a Combined Cycle Gas Turbine plant.

Another key use for the gas is in fuel cell systems designed for stationary power, generally applied on a much smaller scale than plants used for base-load grid electricity (see Chapter Two). By combining this with carbon capture and storage (CCS) technology, whereby the CO₂ formed in the creation of hydrogen is stored long term in geological aquifers, rather than released, would allow fossil fuels such as coal or gas to continue to be used without potentially damaging the climate.

The use of CCS technology, both by hydrogen-fuelled plants and also traditional fossil-power or synfuels plants (turning coal into oil), could form up to 3GtC of the 9-10GtC annual emissions savings that will be necessary by 2050.

Growth to Date

Interest in hydrogen has grown as it has become clear that the use of carbon-based fuels will have to be scaled back over the coming decades. Regionally, the US hydrogen market was estimated at US$798.1 million in sales in 2005 and is expected to rise to US$1.6 billion in 2010, an increase of 100% in five years. The European hydrogen market was estimated to be worth about US$368 million in 2005 and is expected to grow at an average annual growth rate of 15% to US$740 million by 2010. Globally, the fuel cell and distributed hydrogen market is expected to grow from a US$1.4 billion industry (primarily from research contracts and demonstration and test units) to US$15.6 billion over the next decade.

Interest in CCS has also increased significantly over the past few years, as costs have begun to come down. There are a few working examples with oil and gas expro companies re-injecting CO₂ into aquifers to aid oil extraction which, given additional revenues from the extra oil and gas, is already economic. There are now some 12 pilot projects around the world linked to the capture of emissions from industrial or power generation installations, with 20 more in the planning stages. Companies involved in the pilot projects include most major oil companies, alongside a smattering of utilities and oil and gas service companies.

The US National Energy Technology Laboratory, operated by the US Department of Energy, is aiming to demonstrate safe, cost-effective GHG capture, storage and mitigation on a commercial scale by 2012. In one project, in the San Juan basin in northern New Mexico, 75,000 tonnes of CO₂ are to be pumped into an ageing coal-bed methane (CBM) field operated by oil company ConocoPhillips.

Growth Projections

Given the potential for CCS to virtually eliminate CO₂ emissions even from traditional fossil power generation, it is possible that this technology will come to be in widespread use for new-build power stations, once it has become more economical. Estimates for the increased costs involved in the use of CCS in electricity production are US$0.01-0.05 per kWh, depending on the specific technology and location. Early in 2007, the Southern Montana Electric Generation and Transmission Co-operative, developers of a proposed US$515 million 252MW coal-fired thermal power plant in Montana, announced plans to capture up to 90% of its estimated 2.4 million tonnes of annual CO₂ emissions. The company believes that the additional cost will be offset by reductions in future carbon taxes, and carbon capture is not expected to increase the cost of electricity to more than US$47 per MWh.

Hydrogen-power generation with CCS technology is at an earlier stage of development. However, in July 2006, GE announced a partnership with BP to build 10-15 hydrogen-fuelled power plants over the next decade, using GE technology. Plans have been announced for two US$1 billion, 475-500MW hydrogen power plants in Carson, California and Peterhead, Scotland. The California plant is scheduled to be finished in 2011 and the Scottish plant is to be completed by 2010. This latter plant, located at Scottish & Southern Energy’s Peterhead power station, will convert natural gas from North Sea fields into hydrogen and CO₂. The 1.2 million tonnes of CO₂ per year will be sequestered in the BP-operated Miller oil-field more than 4km under the sea bed. BP had been in discussions with the government over potential support incentives (as capital costs will be up to US$600 million) and was expecting to be able to go ahead with the project in early 2007, but it has now been delayed by at least a year. About 200 construction jobs are expected to be created during construction of the onshore facilities, and 100 permanent jobs at Peterhead Power Station.
The experts agree: energy-efficiency must be the first priority in tackling climate change. Enormous amounts of energy are wasted by inefficient products, poorly insulated buildings, and a lack of consumer awareness. And – for entrepreneurs, investors and managers – the most compelling thing about energy-efficiency is that many measures quickly pay for themselves in reduced energy bills.

Energy-efficient products and technologies are already playing a key role in cutting power waste, and further rapid market growth is expected. Some companies providing these new technologies are reporting 30-40% annual growth in sales.

Buildings account for about one-third of energy use globally, and electricity demand is expected to rise by about 1.5-2% a year in the OECD countries. The Princeton University analysis includes the potential for reductions of 1GtC through established approaches to improving energy-efficiency in buildings, which translates to a 25% reduction in building emissions by 2050.

Lighting alone accounts for 10-15% of domestic and 25-30% of commercial power use, making the compact fluorescent lightbulb (CFL) an important weapon in the battle to reduce energy use. A total switch-over to CFLs would cut worldwide electricity demand by 18%. The bulbs are typically guaranteed for 8,000 hours and use a quarter of the power of incandescents.

Electric appliances account for 50% of domestic power use and around 10% of household electricity consumption is wasted, through stand-by losses or unused electricity drain. As such, more efficient design in household appliances and electronic goods, including reduced stand-by power consumption, offers substantial power demand reduction potential.

Technologies to improve space and water heating, the major energy use in a building, include more efficient combined heat and power (CHP) systems, or micro-CHP for domestic use. Market demand could be enormous: the total world domestic boiler market is worth around US$10.9 billion, with 10.46 million units replaced in 2005. Each year, 1.5 million boilers in total are sold in Germany and 1.3 million in the UK. Micro-CHP sales have shown consistent growth over the last five years, most markedly in Germany.

Energy-efficiency also delivers benefits beyond direct cost savings and emission reductions, such as more comfortable homes and offices and quieter motors; stores and schools optimising daylight use can increase retail sales and improve learning; and measurements also show that in efficient buildings, labour productivity typically rises by about 6–16%.
Growing concerns about energy-efficiency within the last 5-10 years are creating substantial market opportunities and economic benefits. Government policy across the four countries covered in this report is moving in the direction of increased energy-efficiency to cut costs – and some companies are beginning to exploit the opportunities created. As well as meeting regulatory energy-efficiency requirements, leading appliance and electronics manufacturers are adopting voluntary standards to reduce electricity use in both operative and stand-by consumption.

Uptake of energy-efficient products has grown given increased availability, consumer awareness and increased electricity costs. These product ranges are therefore creating value for companies tapping into substantial consumer demand.

For example, spend on energy-efficient products in the UK during 2005 was estimated to reach £1.6 billion, up 11% on 2004. In Germany, between 1991 and 2004, the energy-efficiency index for households improved by 9% (a calculation based on eight end-uses including space heating, water heating, cooking and five large appliances). Germany also has the highest uptake of CFLs among the EU-15, with 6.5 per household.

In Japan meanwhile, the Environmental Protection Agency estimates that Energy-Star labelled products will have provided cumulative net savings to customers of more than US$84 billion. Two billion such products have been sold to date.

Japan is aiming for a 30% increase in energy-efficiency on 2006 levels by 2030, through its New National Energy Strategy, launched in 2006, even though it is already considered the most highly efficient country in the world. Japan plans to build a society exploiting next generation energy sources such as solar power, hybrid cars and fuel cell heating. Japan’s energy strategy particularly targets the improvement of efficiency in its transportation sector and daily life via tightening efficiency standards in the use of home appliances and fuel-efficient automobiles.

In addition to reducing energy costs and improving energy security, energy-efficiency can contribute to job creation and retention. For example, an improvement in energy-efficiency can divert expenditure from electricity generation – a highly capital-intensive industry – to more labour-intensive industries.

In addition, employment has been created by the energy services companies, or ‘ESCOs’, set up after the oil shocks of the 1970s. These are most common in the US, although they are also well established in the UK and Germany. Such companies typically contract to meet their clients’ energy needs for a fixed price, thus providing an incentive for the ESCOs to improve their clients’ energy-efficiency.

As of 2000, there were 54 ESCOs in the US (although 75% of the market is concentrated in 13 companies). It has been estimated that the market grew at an average rate of 25% per year during the 1990s, although this slowed down somewhat to 9% per year by 2000. Annual revenues from performance contracting were estimated to be between US$1.2 and US$1.8 billion in 2002.

ESCO activity outside the US was worth US$560-620 million, suggesting substantial opportunities for growth. In the UK, ESCOs grew by 15% per year during the 1990s, driven by the increased use of outsourcing in industry, and since 2003, by large increases in gas and electricity prices. In Germany, there were 500-1000 ESCO contracts worth US$150 million in 2001, and Japan counted 21 ESCOs worth US$61.7 million in the same year.
MAJOR PLAYERS:
The companies for whom the capacity and incentives to create energy-efficient products for mass take-up are greatest are often the large manufacturers of home appliances, electronics, heating and cooling systems and lighting. Many of these are industrial manufacturers or conglomerates with a wide range of products and large R&D divisions. Below are some who have benefited from meeting new market demands, or indeed, are helping to generate them.

ENERGY-SMART APPLIANCES:
— Whirlpool is the world’s largest home appliance manufacturer, with annual sales of more than US$14 billion. It has been an Energy Star Partner of the Year every year since 1999. It has always had a strong focus on energy-smart appliances, and has often been a step ahead of consumer awareness and demand for such products.
— Mitsubishi Electrical Corporation is one of the largest Japanese industrial manufacturers, with total sales in fiscal 2005 of JPY3,604 billion (US$30.8 billion). Eco-products, including energy-efficient air-conditioners, TV and washing machines comprised 74% of FY2005 sales.
— Matsushita Electric Industrial Company is a Japanese electronics giant, with 2006 revenues of JPY8,894 billion (US$73.9 billion). The company has a goal to improve the GHG efficiency of its products by 50% between 2001 and 2010. By 2003, its efforts had benefited its customers to the tune of JPY18.2 billion in terms of reduced energy costs.98

ENERGY-SMART HEATING/COOLING:
— United Technologies Corporation (UTC) is a large US-based industrial manufacturer with 2005 sales of US$42.7 billion. Two primary sources of revenue for UTC are air conditioning manufacturer Carrier (29% of total revenue in 2005) and elevator manufacturer Otis (22%). Carrier residential air conditioning systems are 30% more energy-efficient than previous designs and energy savings achieved by Carrier equipment over its lifetime will be equivalent to retiring one million cars. Otis’ Gen2 elevator system is 50% more energy-efficient than conventional systems. Gen2 systems are being widely implemented in China, the fastest growing segment of the world elevator market.
— Danfoss is a private company based in Denmark, with a turnover of US$2.7 billion a year, which manufactures components such as valves, controls, pumps, compressors, drives, and motors for refrigeration, air conditioning and heating systems. New US residential air conditioners regulations, requiring a 30% increase in efficiency, have seen its valves used in one in three new AC systems. Industrial air conditioning units can reap similar efficiencies, by using Danfoss’s Turbocor compressors. These products and others have made the US the fastest growing market for Danfoss. Sales growth for 2006 increased over 30% on 2005.
— Johnson Controls, based in the US, operates in three market segments, including building efficiency involving HVAC and integrated building management systems, and is also the largest provider of facilities management services to the Fortune 500. The buildings efficiency business generated US$6 billion in revenues in 2005, up 7.4% on 2004.
— Capstone Turbines is the world’s leading producer of low-emission microturbine systems and was first to commercialise a viable microturbine energy product in 1998, for use in CHP units. Founded in 1988 in California, and listed in 2000, revenues grew 40% between 2005 and 2006.
— SenerTec is the leading company in Europe for micro-CHP for use in domestic heating. It was set up in Germany in 1996 and is now owned by Baxi Group (a heating and boilers specialist). More than 13,000 of its CHP units are currently installed throughout Europe.

ENERGY-SMART LIGHTING:
— Philips is the world’s largest lightbulb manufacturer, with lighting sales of €4.8 billion (US$6.4 billion), accounting for 16% of total 2005 revenues. The company is also promoting energy-saving lighting, lobbying European city governments about the benefits of energy-efficient street lighting and promoting CFLs to consumers and architects. Philips expects its sales of CFLs to rise to 325 million units in 2007, up from 65 million in 2001. Sales of environmentally-orientated products rose to €4 billion (US$5.3 billion) in 2006 – these included several new efficient lighting products, an area in which Philips has invested €400 million in R&D in the past five years.99
— GE controls 60% of the market for residential bulbs in the US. Wal-Mart, the world’s largest retailer, is partnering with GE to meet its goal of selling 100 million CFLs by the end of 2007, one for every household in the US. This initiative will be a key driver in enabling mass market penetration of CFLs into the US market.
— Siemens is another big global player in the lighting industry, and has offered rebates on energy-saving bulbs through Shaw’s Supermarkets, Lowe’s and other US retailers. In Germany, Europe’s largest lighting market, innovative lighting products generate c. 40% of revenues for Siemens’ subsidiary OSRAM.
FACT:

WAL-MART IS PARTNERING WITH GE TO SELL 100 MILLION CFL’S BY END 2007, ONE FOR EVERY US HOUSEHOLD.
CHAPTER TWO: ENERGY-SMART PRODUCTS

COUNTRY-LEVEL OVERVIEWS

UK

BENEFITS FROM EFFICIENCY

In the UK, although absolute energy use has increased, residential energy-efficiency has doubled since the 1970s, saving consumers £10 billion, whilst reducing carbon dioxide emissions by 28Mt C\textsubscript{0} per annum; almost as much as the combined emissions of the UK’s coal power stations. Consumers are now increasingly prepared to invest in solutions to reduce energy use particularly given that, since 2003, the average annual electricity bill has increased by £141 to £383, and the average gas bill has gone up by £300 to £630.101

Consumer spending on energy-efficient electrical appliances rose from £1.4 billion in 2004, to £1.5 billion in 2005, a growth of 11%102 (see table below). Over the same period, UK household expenditure increased by only 1.4%. CFL uptake has increased by 110%, from 10 million unit sales of CFLs in 2001, representing 6.5% market share, to 21 million bulbs in 2005, representing 13% of market share.

SUPPORTED BY

— The UK’s Energy Saving Recommended logo used for new home appliances.
— The Energy Star label, adopted for office equipment in European countries, expected to help reduce consumption by about 10TWh/yr by 2015, equivalent to just over 2% of the UK’s electricity consumption in 2005.103
— Energy-efficiency branding, advertising and retail staff training.
— The 2006 UK Building Regulations which, among other things, specify the need to provide energy-efficient fixed building services.
— A new suite of tax measures announced in October 2006 by the European Commission – covering energy-efficient buildings, appliances, processes and energy systems, and which aims to cut energy use by more than 20% by 2020, reducing the EU’s annual fuel bill by €100 billion.

FUTURE PROJECTIONS

As discussed, cutting energy waste is the cheapest, easiest and fastest way to solve many energy problems, improve the environment and enhance both energy security and economic development. Many corporate energy-efficiency projects – such as retrofits installing, for example, high efficiency lighting, air conditioners, boilers and waste heat recovery systems – quickly pay for themselves. Typical annual returns on investment are 20-40%.

Energy-efficiency uptake is, however, notoriously low, and governments are now very keen to address this. One solution to overcome the perceived effort involved is for electricity utilities to dramatically expand their demand-side management programmes and provide energy-efficiency services to households involving physical upgrades, much in the way that corporate ESCOs operate. Alternatively, as is being discussed currently in Europe and the US, and already committed to in Australia, some inefficient types of products such as incandescent lightbulbs could be banned outright, to enforce uptake of improved technology such as CFLs.

In Europe alone, a 20% reduction in energy consumption by 2020 would deliver:
— A net saving of 660 billion per year, or the present combined energy consumption of Germany and Finland
— Enhanced economic competitiveness
— One million additional jobs, more than those supplied by the entire mining/ quarrying sector across Europe.100

<table>
<thead>
<tr>
<th>LOW CARBON HOUSEHOLD PURCHASING IN THE UK</th>
<th>2004</th>
<th>2005</th>
<th>GROWTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY-EFFICIENT ELECTRICAL APPLIANCES</td>
<td>£1.361m</td>
<td>£1.511m</td>
<td>11.0%</td>
</tr>
<tr>
<td>MICRO-GENERATION</td>
<td>£21m</td>
<td>£26m</td>
<td>23.8%</td>
</tr>
<tr>
<td>ENERGY-EFFICIENT LIGHTBULBS</td>
<td>£34m</td>
<td>£35m</td>
<td>2.9%</td>
</tr>
<tr>
<td>GREEN CARS</td>
<td>£30m</td>
<td>£138m</td>
<td>53.3%</td>
</tr>
<tr>
<td>GREEN ENERGY</td>
<td>£38m</td>
<td>£54m</td>
<td>42.1%</td>
</tr>
</tbody>
</table>
Chapter Two: Energy-Smart Products

Benefits from Efficiency

The 1992 Energy Policy Act (EPACT) standards are expected to save consumers US$186 billion by 2030. More than 1,400 manufacturers now use the Energy Star logo across a total of 32,000 individual product models, and the logo is now recognised by over 60% of consumers. The EPA estimates that two billion products with the high-efficiency Energy Star logo were sold from 2002 to 2006. In 2005 alone, the US saved US$12 billion in reduced energy costs from the use of these products, and prevented the release of GHG emissions equivalent to 23 million cars. By 2012, the EPA estimates that Energy Star will have delivered cumulative net savings of more than US$84 billion.

Forward-looking retailers such as Wal-Mart stand to benefit from this new trend. Overall sales of CFLs rose 22% between 2004 and 2005. Krystal Planet Corporation announced that six months into the launch of its green technology product catalogue in 2005, sales were growing by an average 52% per month (624% annualised). Furthermore, policies to promote energy-efficiency within individual businesses can significantly boost productivity. Case studies demonstrate benefits such as increased product output, shorter process cycle times, increased reliability in production, improved product quality, improved working environments, and better morale among workers.

Reduced power demand resulting from increased energy-efficiency also lowers the risk of brownouts and blackouts at times of peak demand. Two days of rolling blackouts during the California energy crisis in 2001 cost California businesses an estimated US$1.7 billion in lost productivity.

Supported by

- The Energy Savings Ordinance, in force since February 2002 and aiming to reduce the energy requirements of new residential and non-residential buildings by 25-30%. A new Energy Savings Ordinance is planned for 2007.
- A joint nationwide information campaign on efficient electricity use by electricity sector trade associations and the German Energy Agency (Dena), started in autumn 2002.
- The adoption of various other eco-labels, including Energy Star, for office equipment in European countries.
- Energy certificates introduced under the 2007 Energy Conservation Regulations to kick-start energy-efficiency improvements in the building stock.
- The 2006 European Commission tax proposals covering energy-efficient buildings, appliances, processes and energy systems.

Germany

Benefits from Efficiency

Between 1991 and 2004, household energy-efficiency has improved significantly, partly due to improvements in electrical appliances and space heating. Germany has the highest uptake of CFLs in Europe, with 6.5 per household. Micro-CHP systems have also proved popular, with the majority of Europe’s 13,000 complement of such systems installed in Germany.

In 2004, the energy-efficiency index for the industrial sectors (by unit of output) improved by up to 23% compared to 1991. This is considerably above the EU average of 12%.

However, there is much potential still to be exploited. The Federal Environmental Agency reports that, in 2004, stand-by consumption alone – reaching 14.7TWh – was equivalent to half the output of all the wind turbines in Germany that year, and 3% of total electricity production. Preventing stand-by losses through improved technology could save German offices and households €3.5 billion annually.

Supported by

- The Energy Savings Ordinance, in force since February 2002 and aiming to reduce the energy requirements of new residential and non-residential buildings by 25-30%. A new Energy Savings Ordinance is planned for 2007.
- A joint nationwide information campaign on efficient electricity use by electricity sector trade associations and the German Energy Agency (Dena), started in autumn 2002.
- The adoption of various other eco-labels, including Energy Star, for office equipment in European countries.
- Energy certificates introduced under the 2007 Energy Conservation Regulations to kick-start energy-efficiency improvements in the building stock.
- The 2006 European Commission tax proposals covering energy-efficient buildings, appliances, processes and energy systems.
FACT: By 2010, Japan’s building energy codes will save US$5.3bn and 34 million tonnes of CO$_2$ annually.
Chapter Two: Energy-Smart Products

Japan

Benefits from Efficiency

The Japanese government’s Kyoto implementation plan projects that its energy codes for households and office buildings will save US$5.3 billion per year while avoiding 34 million metric tonnes of CO₂ emissions annually by 2010. CFLs, for example, already account for 10% of lightbulb sales in Japan, a proportion that has been increasing year-on-year, partly due to government campaigns.

Energy-efficiency can also lead to improved economic productivity, and related job creation and retention. Some of the most electricity-intensive industries in Japan, such as the paper and iron industries, spend an average of 5-7% of their total costs on electricity. If these companies were to optimise energy-efficiency, the reduced operating expenses associated would help businesses maintain competitive prices and retain jobs in Japan.

In summer 2005, Prime Minister Junichiro Koizumi launched the ‘cool biz’ campaign, encouraging workers to stop wearing ties to work and to set office airconditioners at 28°C or higher. In Tokyo alone, the campaign is reported to have saved 70 million kW in demand for power over the summer enough to power a city of a quarter of a million people for one month, according to Tokyo Electric Power Company.

The government has also introduced its ‘Top Runner’ standard, which requires over time all products to reach the same specifications of market-leading ‘top runners’. The Japanese government expects this to have resulted in energy savings of up to 59% for video recorders, 63% for air-conditioning systems and 83% for computers by 2010.

Supported by

- Japan’s strong energy-efficiency tradition – In 2001, Japan consumed around half of the energy per person of the US.112
- A goal to increase energy-efficiency by 30% from 2006 levels by 2030.
- The Top Runner Standard for energy-efficiency.
- The Voluntary Energy Saving Labelling Programme, which covers 13 products.113
- The Japanese government’s Kyoto implementation plan – including energy-efficiency of machinery and equipment (45% of goal), energy-efficiency in housing and office buildings (43% of goal) and home and building energy management systems (12% of goal).
- The Japanese government’s national campaign in 2005 to dramatically boost energy-efficiency in its economy – encouraging the public to replace older, inefficient appliances and to buy hybrid cars.
- Recent goals for boosting appliance efficiency even further, cutting the energy use of television sets by 17%, personal computers by 30%, air-conditioners by 36%, and refrigerators by 72%.
FUEL CELLS FOR STATIONARY POWER GENERATION

Fuel cells are one of the great hopes for reducing greenhouse gas emissions – if their fuel, hydrogen, is made using renewable energy. A fuel cell is essentially an energy storage device. It produces electricity through an electrochemical process that combines hydrogen and oxygen in the presence of a catalyst, with water and heat as the only by-products. While many hoped that fuel cells would soon replace the internal combustion engine in cars, it is likely that the first wide-scale commercialisation of the technology will be in stationary power generation where, in addition to their emissions-reduction potential, they provide ultra-high reliability power with limited heat output and no noise.

GROWTH TO DATE

The 2007 PwC Fuel Cell Survey covered 181 respondents, with reported sales up from US$331 million in 2005 to US$353 million in 2006. Almost half of all sales (48%) took place in the US, while Japan and Germany accounted for 14% and 12% respectively. R&D expenditure increased by 11% to US$796 million – mostly in the US and Canada. In the US, forty-seven states and the District of Columbia have some sort of fuel cell or hydrogen legislation, demonstration or activity taking place today, and employment is also up to 7,074 FTEs.

There are currently about 100MW of stationary fuel cell capacity installed globally. To put this in context, total global electricity generating capacity stands at 3,800GW, of which renewables (including large hydro) make up 930GW. Over three-quarters of stationary fuel cells are used in Japan, with around 12% in the US, 5% in Europe, and the remainder in other Asian countries. The number of stationary fuel cell units globally has risen from 1,000 in 2002 to more than 5,000 by 2006 (see graph). More than 50% of stationary fuel cells are manufactured in Japan, about one-third in the US and around 10% in Europe, and US and Japanese companies dominate in terms of market share.

Japan is still leading the way in the residential sector, with new houses in some areas sold with fuel cells installed. A 1kW fuel cell unit presents an alternative to a standard water heater, providing 100% of hot water needs and the first kW of electricity. However, uptake has typically been within niche markets such as these, as the technology is not currently economic in most applications. The flip-side of this is that percentage growth rates have been rapid, exciting investor interest.

SUPPORTED BY

Growth has been driven mainly by government R&D support and incentives:

- **The Fuel Cell Commercialisation Conference of Japan (FCCJ)** coordinates the efforts of government and industry towards the implementation of fuel cell technology. Subsidies for the industry in 2004 totalled JPY32.9 billion (US$270 million), up from JPY30.7 billion in 2003. The Japanese government further announced an increase in its investment by 7% in March 2005, bringing total investment to US$350 million.
- **The Japanese national cogeneration fuel cell project.**
- **The Bush Administration’s 2003 Hydrogen-Fuel Initiative, funded to the tune of US$1.7 billion over five years and the US Department of Energy’s award of US$100 million to fuel cell R&D in October 2006 to fund 25 projects.**
- **Connecticut’s Project 100, aiming to develop 100MW of renewable energy generation by 2008, including large-scale (1MW+) fuel cell plants.**
- **The Renewable Portfolio Standard initiatives in California, e.g., the Self Generation Incentive Program, which provides incentives for base load capacity provided by fuel cells.**
- **The 2003 International Partnership for the Hydrogen Economy (IPHE), launched initially between the US and the EU, and now including 16 countries and the European Commission.** The IPHE involves countries and regions involved to coordinate on R&D work related to hydrogen and fuel cell technologies. It also provides a forum for developing common technical standards, and keeps stakeholders and the public informed.

MAJOR PLAYERS

US

FuelCell Energy is a manufacturer of various sized ‘molten carbonate’ fuel cell power plants. Sales increased to 9MW in 2006 from 6MW in both the past two years. However, to become profitable, FuelCell Energy needs to lower its cost per kW for its stationary power fuel cell from about US$9,000 (as of 2005) to US$1,500.

Ballard Power Systems and Plug Power are both major North American fuel cell companies providing fuel cells for stationary applications, focusing on domestic cogeneration and industrial on-site energy generation respectively. Ballard’s 2006 revenues reached US$149.8 million, up from US$42.2 million in 2005. Currently Ballard’s system costs are c. US$45,000, but this is hoped to come down to US$11-30,000 by 2008 and then to US$6-13,000 by 2011.

UTC Fuel Cells is the largest supplier of ‘phosphoric acid’ fuel cell units in the world. Its product, PureCell 200 (200kW/925,000 Btu/h) combined Heat and Power unit), has been installed in more than 275 sites worldwide. One high profile project that UTC is involved with is the Verizon call-switching centre in Garden City, New York. This location is home to 1.4MW (7 x 200kW units) PACF power – the largest such fuel cell project in the world.

Distributed Energy Systems Corp., is the hydrogen electrolysis products leader in fuelling demonstration programmes, with about 10 of these currently running. Quantum Fuel Systems Technologies Worldwide, Inc. designs, manufactures and supplies integrated fuel systems to OEMs for use in various fuel cell applications.
EU
Siemens and Energie Baden-Wurttemberg have announced plans for the first ever 1MW fuel cell power plant capable of producing electricity at 70% efficiency. The groundwork for the planned fuel cell hybrid plant is to be completed in 2008, with the plant running at full capacity by 2012. European Fuel Cells, owned by the UK’s Baxi Group, is developing and testing a ‘Fuel Cell Heating Unit’ to provide 75% of heating needs for a typical European household.
Ceres Power is working with British Gas and the UK’s Department of Trade and Industry on residential CHP for the UK market. Ceres expects to commission a full-size manufacturing facility for the units during 2008.

JAPAN
Matsushita Electric Industrial Co. is a leader in the Japanese fuel cell market and is actively marketing houses with fuel cell CHP units installed. The company aims to reduce the production cost of the fuel cell CHP units to JPY1.2 million (US$10,000) by 2008. Fuji Electric is developing larger 100kW units for small industrial or large building use and has to date released two models, the first of which appeared in 1998. By the end of 2006, Fuji Electric will have delivered a total of 18 units, 16 of which are running off synthetic gas and two off digester gas. Fuji has set a commercialisation date of 2008 for its units and is targeting annual sales of 5–10,000 units, priced at JPY1.5–2 million (US$12–16,000). By 2015 it is aiming for a reduction in price to JPY300,000–500,000 (US$2,500–4,000). Fuji is also developing a small household-size 1kW fuel cell power unit, running on city gas (85% LNG, 5% natural gas and 10% LPG).
Toshiba Fuel Cell Power Systems is a new subsidiary formed by Toshiba to commercialise its 1kW residential fuel cells, by 2008. Its ‘Dash to 2008’ aims to put a unit on the market costing less than JPY1.2 million (approximately US$9,500). Kyocera is developing 1kW ‘solid oxide’ fuel cells for residential use, and larger units for businesses. The 1kW unit is in collaboration with Osaka Gas, whilst the large unit is with Tokyo Gas and is anticipated to be commercialised in the spring of 2007.

GROWTH PROJECTIONS
Hydrogen fuel cells based on natural gas are expected, on current trends, to start to become economically attractive in small-scale power generation applications after 2020, producing 1% of total electricity output globally by 2030. It is likely that a combination of recent advances in fuel cell technology and larger customer orders will help drive down manufacturing costs and improve the economic incentives for this technology fairly rapidly.
In terms of market value, the global fuel cell and distributed hydrogen market is expected to grow from US$1.2 billion in 2005 (primarily for research contracts and demonstration and test units) to US$15.1 billion by 2015. Currently, Japan is the major market for fuel cells, although units for stationary applications are installed mainly for trial use. However, Ballard Power Systems certainly sees residential cogeneration in Japan as a near-term commercial opportunity, by around 2009/10. The Japanese national cogeneration fuel cell project provided subsidies of US$26 million in 2005 and US$32 million in 2006 for the deployment of 1kW units providing electricity and hot water, and there is a request for US$32.7 million in the 2007 budget. The market value is estimated to be over US$9 billion in annual systems sales (1.8 million single family detached households). By 2010, Japan’s Ministry of Economy, Trade and Industry (METI) has set a target for 1.2 million fuel cell cogeneration units to be installed in Japanese households – making up a total of 1.2GW of distributed generating power. That represents around 2% of the country’s 47 million households, however, the Japanese government expects that, by 2030, fuel cells will be used in at least 6% of households.
Government policy is backed by oil and gas companies buying into cogeneration, with commitments to launch products that they hope will enable them to compete with Japan’s electricity companies.
Vehicles are responsible for around 25% of man-made greenhouse gas emissions annually – and, worryingly, their emissions are increasing rapidly. Worldwide, more than one billion vehicles are predicted to be on the road by 2025.\(^\text{134}\)

As such, vehicle emissions represent a major challenge in addressing climate change. And efforts to address climate change will also help address energy security and costs related to fossil fuels. In the US, net imports account for 58% of total petroleum consumption, mainly from Middle Eastern countries, and the EU buys 82% of its oil from third-party states such as Russia, which is increasingly flexing its muscles where energy is concerned.

But a range of technologies exist to help decarbonise car-travel. Two of the 1GtC emissions reductions ‘wedges’ could stem from these solutions.

Biofuels perhaps provide the first step towards reducing vehicle greenhouse gas emissions. If biofuels are sustainably grown and processed, their use will release only a small net amount of carbon dioxide (CO\(_2\)). If, by 2050, we managed to replace 34 million barrels per day of petrol with ethanol (a production rate 50 times greater than today), we would save 1Gt of carbon every year.

There is enormous investor interest in the sector and plenty of capacity for growth. However, there are hurdles to be overcome, such as concerns over loss of rainforest cover, or land needed for food production, and greater emissions of other GHGs during biofuels cultivation, such as N\(_2\)O from fertilisers.

Energy-smart solutions such as improved fuel economy, e.g., through the use of hybrid-engines or by improving engine efficiency, or using fully-electric systems, offer another approach.

Hybrid car engines use a mix of petrol or diesel and battery-power. The most efficient emit between 42-47% of the emissions of a conventional car engine.

Plug-in hybrids are a mid-step between hybrids and electric cars, allowing owners to recharge at wall outlets, and as the technology and driveability improve, sales of the purely electric Smart and GeeWhiz cars in Europe are growing, and ZAP (Zero Air Pollution) has recently rolled out its first electric ‘XEBRA’ city car in several states across the US.

To save another 1Gt in annual carbon emissions by 2050 would require all two billion cars expected on the roads by 2050 to have doubled their fuel economy, from 30 to 60 miles per gallon.

The future might also see the introduction of novel zero-carbon propulsion systems, for example, using hydrogen as an energy carrier alone, or within fuel cells, as discussed at the end of this chapter.

Emission reductions are in the end likely to be delivered by a portfolio of approaches involving all of the above technologies.
MARKET GROWTH AND VALUE CREATION

GROWTH TO DATE

Globally, government incentives in place to stimulate the growth of new transport technologies include significant tax credits, the waiving of various charges and road regulations applicable to conventional vehicles, government R&D programmes and reduced fuel duty on biofuels.

BIOFUELS

Such support has helped drive dramatic production growth: from 2000-2005, production of biofuels globally grew 95% from 8.8 to 17.07 million tonnes of oil equivalent (Mtoe).136 Biofuel options include:

- Bioethanol (often E85 – 85% ethanol/15% petrol) is made from the fermentation of corn, sugar cane or other such crops and is in widespread use in Brazil, and commonly available in the US.
- ‘Cellulosic’ or second-generation bioethanol can be derived from a much wider range of feedstock, including agricultural waste, using enzymes to extract the sugar. However, the extraction technology isn’t currently commercial. Shell has invested in this sector.
- Biodiesel – often made from soy beans, palm oil or wastes – is used in Europe in particular.
- Biobutanol – a more advanced biofuel, using the same feedstocks, but with superior properties making it more compatible with existing engines and supply infrastructure – is under development by BP and DuPont.

At low blending levels, biofuels can be used in virtually all vehicles, and in fact petrol quite often will have a small amount of ethanol blended in without drivers realising. The growth of the biofuel industry therefore is not necessarily dependent on auto manufacturers producing specifically adapted flex-fuel vehicles (FFVs), although for eventual mass scale-up of this fuel, such a development would be necessary. A market is furthermore emerging for FFVs which, for a small additional cost – less than US$150 – can be manufactured to accept higher blends of biofuels, particularly required for bioethanol.

Brazil, with its large sugar crop, and vulnerability to rising oil prices, pioneered the development of FFVs and a domestic ethanol market in the 1970s, although the US – driven by government policy and regulation – is following suit. There, the most common fuel used is E85, and there are roughly six million FFVs on US roads. The cars have been popular with both customers and with auto makers, who can earn credits for producing highly fuel efficient FFVs that can be offset against other less efficient traditional cars.

In Europe, biodiesel is much more widely used than ethanol, as about half the cars in use have diesel engines. In the UK, cars and light trucks used twice as much biofuel in 2005 as in 2004, at over 250 million litres (220,000 tonnes) of mostly biodiesel. However, in Europe, there is currently only one model able to run on E85 – the Saab BioPower – available in a few countries. But in Sweden, it has taken 30% of new car sales since its launch there in July 2005. The first Saab BioPower cars have been recently introduced in Germany and the UK, where the first E85 blend petrol pumps have been installed by Morrisons supermarket chain.

Japan’s FFV market is currently very small, as virtually all biofuel has to be imported. However, this is likely to change rapidly, as a government initiative launched in June 2006 aims for 40% of cars to be able to run on biofuels within five years, such as a biofuel blend called gasohol, and there is likely to be financial support for the growth of a domestic biofuel production industry.

In 2005, 2% of the world’s gasoline market and 0.2% of the world’s diesel market were supplied by biofuels.137 This is expected to rise to 5% by 2010 and almost 10% by 2020. And investors are piling in: investment in new biofuels production capacity worldwide exceeded US$1 billion in 2005 and reached US$2 billion in 2006.138

HYBRIDS

In terms of energy-smart cars, hybrid cars have become increasingly popular with consumers in the US, Europe and Japan since the launch of the first Honda vehicle in 1999-2000, and markets have grown rapidly. Worldwide, hybrids are forecast to reach one million in annual unit sales by 2010.

The US is the largest hybrid market, and Toyota is the clear leader there (and worldwide), mainly via its Prius models, but it is also building sales of its up-market Lexus brand. Its worldwide hybrid sales reached 750,946 units by August 2006, just over half sold in the US, where the company has nearly three-quarters of the hybrid market. Although hybrids currently represent a small percentage of total cars sold – only 2% of Toyota’s 2005 European sales, 3% in Japan and 6% in the US – the company expects hybrids to comprise 20% of all US sales by 2012.

Germany and the UK are the largest car markets in Europe, although neither have yet generated the same level of hybrid sales as the US, and only three or four models are currently available. However, this looks to be changing. In the UK, there are government measures to help support the introduction of hybrids such as low Vehicle Excise Duty and a congestion charge exemption in London. Toyota’s hybrid sales in Europe reached 36,470 units in 2006, an increase of 56% over 2005’s 23,368 hybrid sales. By 2011, at this same rate of increase, sales would reach 336,945 units in Europe.
Recent developments in the global auto industry show how vulnerable companies can be to changing customer preferences, driven by resource constraints and environmental concerns. The big US automakers – GM, Ford and Daimler Chrysler – have been hit hard by an over-reliance on gas-guzzling SUVs (comprising 60% of their sales), at a time when more American drivers are switching to smaller, more economical cars due mainly to higher fuel prices.

In 2005, the price of gasoline in the US reached a record US$3 per gallon in most states. As a result, the craze for SUVs appears to have peaked in 2004-05, at just over four million in unit sales in the US, and to now be on a downward trajectory, falling quickly to near 3.5 million in 2006. Ford has plans to close 16 factories in North America and cut 45,000 jobs. GM has already closed 12 plants and cut more than 34,000 jobs, trying to cut US$9 billion from 2006 operating costs after a US$10.6 billion net loss in 2005. Chrysler is cutting 9,000 jobs in the US and 4,000 in Canada.

As SUV sales have dropped, the sale of smaller vehicles has risen. And the beneficiaries have been Japanese firms Honda and Toyota, with their ranges of smaller, more fuel-efficient models. By 2005, Japanese-owned plants in the US were producing four million cars per year, 25% of the whole US output. Toyota is now rolling out its hybrid electric-petrol engine across its entire range. The company is now the world’s ninth most valuable – worth more than double the combined value of GM, Ford and Daimler Chrysler (also dubbed ‘The Big Three’).

The ‘Big Three’ are being forced to revise their former strategies, and are seeking to emulate Toyota and Honda’s success. GM is still the leader in terms of number of models of flex-fuel vehicles and, in 2006, produced 400,000. Moreover, GM, Ford and Daimler Chrysler have announced combined plans to double the annual production of vehicles capable of running on E85 ethanol or biodiesel to two million cars and trucks by 2010. In Germany, diesel-fuelled cars – which are more efficient than petrol models – dominate the market. VW, the largest car maker in Europe, has to date, therefore, steered clear of launching a hybrid model in Germany, but it will introduce one into the US market for 2008. GM, on the other hand, is likely to launch a hybrid diesel within the next few years specifically for the European market.
GROWTH PROJECTIONS

It is expected that biofuels will account for 5% of transport fuels by 2015 globally. There is substantial potential to reduce the costs of biofuel production processes, and realise ambitions for cellulosic ethanol and possibly biobutanol, a third form of biofuel. Biofuels production and use is currently dominated by ethanol, however, by 2030, biodiesel is expected to account for approximately one-third globally and about 15% of total biofuels use in both the US and Brazil. Europe will continue to be the main market for biodiesel in the world with announced capacity to reach c.12 million tonnes of production per year by 2010.

FACT: ONE MILLION HYBRID CARS WILL BE SOLD GLOBALLY BY 2010, 3.9 MILLION BY 2015 AND OVER 7.5 MILLION BY 2020.

PRODUCTION OF BIOFUELS GLOBALLY

<table>
<thead>
<tr>
<th>YEAR</th>
<th>(MILLION TONNES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>14</td>
</tr>
<tr>
<td>2006</td>
<td>143</td>
</tr>
<tr>
<td>2012</td>
<td>143</td>
</tr>
<tr>
<td>2018</td>
<td>143</td>
</tr>
</tbody>
</table>

MAIN BIOETHANOL PRODUCERS IN THE US – PROJECTED CAPACITY GROWTH

<table>
<thead>
<tr>
<th>PRODUCER</th>
<th>2005 PRODUCTION CAPACITY (GALLONS)</th>
<th>2005 TOTAL CAPACITY</th>
<th>2005 CAPACITY UNDER CONSTRUCTION</th>
<th>2009 CAPACITY</th>
<th>GROWTH IN CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ADM</td>
<td>1,070M</td>
<td>25%</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>2 VERAUS</td>
<td>230M</td>
<td>5%</td>
<td>N/A</td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>3 AVVENTE RENEWABLE ENERGY</td>
<td>150M</td>
<td>3.5%</td>
<td>57M</td>
<td>38%</td>
<td></td>
</tr>
<tr>
<td>4 HAWKEYE RENEWABLES</td>
<td>50M</td>
<td>1%</td>
<td>150M</td>
<td>300%</td>
<td></td>
</tr>
<tr>
<td>5 AS ALLIANCES BIOFUELS</td>
<td>N/A</td>
<td>N/A</td>
<td>200M</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>6 ABENGA</td>
<td>110M</td>
<td>2.5%</td>
<td>88M</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>7 MIDWEST GRAIN PROCESSORS</td>
<td>50M</td>
<td>1%</td>
<td>102M</td>
<td>200%</td>
<td></td>
</tr>
<tr>
<td>8 US BIOENERGY CORP</td>
<td>N/A</td>
<td>N/A</td>
<td>145M</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>9 CARGILL</td>
<td>120M</td>
<td>2.8%</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>10 NEW ENERGY CORP</td>
<td>102M</td>
<td>2.4%</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>11 ADVANCED BIOENERGY</td>
<td>N/A</td>
<td>N/A</td>
<td>100M</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TOTAL CAPACITY</td>
<td>1,882M</td>
<td>43%</td>
<td>842M</td>
<td>45%</td>
<td></td>
</tr>
<tr>
<td>TOTAL US CAPACITY</td>
<td>4,336.4M</td>
<td>100%</td>
<td>1,581M</td>
<td>46%</td>
<td></td>
</tr>
</tbody>
</table>

*THE REMAINDER OF THE CAPACITY IS PROVIDED BY ABOUT 70 SINGLE REFINERIES, 70% FARMER-OWNED.
Chapter Three: Low Carbon Vehicle Technologies

Country-level Overviews

UK and Germany

Solutions Take-Up

European markets for hybrids are beginning to take off, with a cumulative total of 50,000 in unit sales by Toyota/Lexus between 2000 and June 2006. New fuel-efficiency regulations are likely to support significant further market development for hybrids.

German biofuel use has already reached millions of cars in the country in a low-blend produced under national blending requirements. In the UK, just 0.3% of cars are knowingly using biofuel, mainly because the distribution network is thus far very limited although, as in Germany, there is often an element of unnoticed blending. However, the UK Renewable Transport Fuels Obligation, requiring suppliers to source a rising percentage of renewable fuels, could create in the UK one of the largest biodiesel markets in Europe over the next 5-10 years.

EU biofuels production overall reached 3.9 million tonnes in 2005, up 65.8% from 2004, of which 80% was biodiesel. Production of ethanol in the EU, however, grew 70.5% between 2004 and 2005. Production of biodiesel was expected to reach six million tonnes by the end of 2006 – see table below.

Driving by

— EU fuel efficiency regulations – the European Commission has proposed a mandatory 25% reduction in fleet average CO\textsubscript{2} emissions by 2012, to 130g/km, replacing a voluntary target that the industry failed to meet.
— The EU’s Biofuels Directive sets a non-binding target of 5.75% of transport fuels to be biofuels by 2010 (on an energy basis).
— As of February 2007, the EU has set a new target for 2020 of 10% biofuels in the transport fuels mix, but there is an ongoing debate over whether this should be mandatory.
— A combination of tax breaks and blending requirements, subsidies for energy crops and R&D programmes.
— Greater potential for the meeting of air quality targets, given biodiesel’s reduced particulate matter burden.

Creating Domestic Value

Investor enthusiasm for biofuels has seen a number of listings, with biofuels producer BioDiesel International raising US$59m in September 2006 on the Frankfurt Stock Exchange, and Verbio raising US$236m in October of the same year.

There are employment benefits also. It has been estimated that one job is created for every 70 tonnes per annum of biodiesel production. In Germany, more than 57,000 people were employed in the biofuels industry in 2005, virtually all in biodiesel.

In its Communication on ‘Alternative Fuels for Road Transportation’ of November 2001, the European Commission expects the rural employment potential from the development of biofuels EU-wide as being 45,000-75,000 new jobs per 1% inclusion level of biofuels. This figure has been based on studies in Germany and Spain. In the UK, 2003 data shows that job creation for biomass as a whole, including biofuels, has so far accounted for 600 jobs, although research from the East of England Development Agency showed that one 100,000 tonne biofuels plant would create 60-80 direct jobs and 550 agricultural jobs and, in this part of the country, agriculture is a more important contributor to the regional economy than the national average. Extrapolating the Commission’s work in Europe to the UK, and assuming a 5% bioethanol inclusion level, some 20-30,000 jobs could be created from the development of a 1.2 million tonne British bioethanol industry.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>1,035,000</td>
<td>1,669,000</td>
<td>+61.3%</td>
<td>52.4%</td>
<td>2,681,000</td>
</tr>
<tr>
<td>France</td>
<td>348,000</td>
<td>492,000</td>
<td>+41.4%</td>
<td>15.5%</td>
<td>775,000</td>
</tr>
<tr>
<td>Italy</td>
<td>320,000</td>
<td>396,000</td>
<td>+23.8%</td>
<td>12.4%</td>
<td>857,000</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>60,000</td>
<td>133,000</td>
<td>+121.7%</td>
<td>4.2%</td>
<td>203,000</td>
</tr>
<tr>
<td>Poland</td>
<td>0</td>
<td>100,000</td>
<td>NA</td>
<td>3.1%</td>
<td>150,000</td>
</tr>
<tr>
<td>Austria</td>
<td>57,000</td>
<td>85,000</td>
<td>+48.1%</td>
<td>2.7%</td>
<td>134,000</td>
</tr>
<tr>
<td>Slovakia</td>
<td>15,000</td>
<td>78,000</td>
<td>+420%</td>
<td>2.4%</td>
<td>89,000</td>
</tr>
<tr>
<td>Spain</td>
<td>13,000</td>
<td>73,000</td>
<td>+461.8%</td>
<td>2.3%</td>
<td>324,000</td>
</tr>
<tr>
<td>Denmark</td>
<td>70,000</td>
<td>71,000</td>
<td>+1.4%</td>
<td>2.2%</td>
<td>81,000</td>
</tr>
<tr>
<td>UK</td>
<td>9,000</td>
<td>51,000</td>
<td>+466.7%</td>
<td>1.6%</td>
<td>445,000</td>
</tr>
<tr>
<td>Others (10 countries)</td>
<td>6,400</td>
<td>36,000</td>
<td>+463%</td>
<td>1.1%</td>
<td>430,000</td>
</tr>
<tr>
<td>Total</td>
<td>1,933,400</td>
<td>3,184,000</td>
<td>+64.7%</td>
<td>100%</td>
<td>6,069,000</td>
</tr>
</tbody>
</table>
Chapter three: Low carbon vehicle technologies

Case study: Provider

Greenergy Fuels supplies nearly 50% of the UK biofuels market. It was founded in 1992 and is one of the UK's fastest growing companies. Turnover for FY 2006 was £775 million and profits reached £8.7 million. It introduced the first crops for fuels contract to the UK farming community in 2003, led the introduction of bioethanol blended petrols and created the next generation of premium quality biofuels blends with the launch of Tesco 99 Octane in 2005.

Greenergy's first biodiesel production plant, located at Immingham on the Humber, is currently operating with an annual production capacity of 100,000 tonnes, sourcing feedstock from UK farmers. The second phase of construction, to double production capacity to 200,000 tonnes, will be completed by the end of 2007. Greenergy has created a 'Carbon Declaration', reporting on emissions savings. For 2006, it announced that it had delivered over 242,000 tonnes of carbon dioxide emission savings through its biofuels sales.

Case study: End-user

Retailer Tesco announced in December 2006 that it would run three-quarters of its distribution fleet on biodiesel from January 2007. Its fleet comprises 2,000 lorries responsible for transporting goods to 754 stores and 716 smaller Express outlets. Tesco estimated that by using the B50 blend – 50% ordinary diesel mixed with biodiesel – it would cut its greenhouse gas emissions by more than 70,000 tonnes a year. It already stocks biofuel blends on some petrol forecourts, resulting in the reduction of a similar level of carbon dioxide emissions to the distribution initiative. Tesco fuels are supplied by Greenergy. Tesco has also partnered with Greenergy in the construction of its new biodiesel plant at Immingham.

US solutions take-up

The US is by far the largest market for hybrids in terms of both absolute numbers of vehicles and the percentage of new car sales. The technology was first introduced in 2000, when only 9,367 hybrid cars were sold. Since then, however, the segment has grown massively – 2,200% by 2005. In that year, hybrid vehicle sales reached 1.3% of total car sales in the US (205,000 cars sold for a total of US$373.2 million), and sales are expected to increase by nearly 120% over the next six years, with revenues reaching US$851.9 million in 2012. This compares very favourably with overall car sales in the US, which rose by only 0.5% in 2005 compared to 2004.

With regard to biofuels, the US is much more focused on bioethanol than biodiesel. The ethanol industry produced four billion gallons in 2005, with a growth rate of 20% per year since 2002. Once serving just niche markets in the Midwest where it is mainly produced, ethanol is now sold throughout the country, and blended in 30% of the petrol. (US biodiesel production in 2005 was only 75 million gallons/250,000 tonnes, albeit tripled from 2004 levels).

Driven by

- A major focus on the use of biofuels to replace an increasing percentage of gasoline, given President George W. Bush’s recent well-publicised concern over the nation’s ‘addiction to oil’. The aim is to cut petrol use by 20% by 2017.
- The 2005 Energy Policy Act requires that 7.5 billion gallons of biofuels are used by 2010, and a new target of 10-12 billion gallons by 2012 is under discussion. That target includes a goal of 250 million gallons of ‘next generation’ cellulosic ethanol from 2013.
- An R&D programme worth US$550 million for advanced biofuels technologies.
- Federal tax credits of US$0.51 and US$1.00 per gallon for ethanol and biodiesel, respectively.
- 40 separate state-level incentives for ethanol production or use.
- Recognition of the positive impact on meeting air quality regulations, and the replacement of the banned MTBE with ETBE in many states, an ethanol-derived petrol additive.
- The boost to the agricultural markets.
- Fuel efficiency regulations in California to reduce greenhouse gas emissions from new vehicles by 22% for the 2012 model year and 30% by model year 2016.
- Fleet fuel efficiency standards in New York, from 2009, tightening up to 2016. Connecticut, Massachusetts, Oregon and Washington are considering similar regulations.
- Federal income tax credits of up to US$3,400 for hybrid cars placed in service from 2006.

Growth in US biofuel production (in billion gallons)

<table>
<thead>
<tr>
<th>Year</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>2.2</td>
</tr>
<tr>
<td>2001</td>
<td>3.2</td>
</tr>
<tr>
<td>2002</td>
<td>3.9</td>
</tr>
<tr>
<td>2003</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Growth in US hybrid electric passenger vehicle sales (in thousands)

<table>
<thead>
<tr>
<th>Year</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>9,367</td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
</tbody>
</table>
CREATING DOMESTIC VALUE

Increasing sales of hybrid cars made by Japanese car manufacturers are helping to support the opening of new manufacturing plants in the US, and hence employment creation. In 2006, members of the Japan Automobile Manufacturers Association (JAMA) opened three new auto and auto parts manufacturing plants, with a fourth plant opening in 2008, at a total investment of US$1.73 billion. By 2008, Japanese corporate investment in US auto and auto parts manufacturing plants will have grown to a projected total of US$30.09 billion. New job creation is estimated at 4,680 in just those four plants. Total employment stands at 431,738 in 25 plants, 36 research facilities, and distributors. JAMA members’ US plants produced nearly 3.5 million cars and trucks in 2005, an increase of 10% over 2004. US-based parts purchases were US$48.44 billion in 2005, reflecting growth of 7% over 2004.

The value of biofuels production plants either under construction or announced up to 2008 exceeds US$2.5 billion. At the end of 2005, 29 ethanol refineries and nine expansions were under construction with a combined annual capacity of nearly two billion gallons. Forecasts are for biofuels to reach 4% of transportation fuel in 2010 and 10% in 2020.

The ethanol industry created almost 154,000 US jobs in 2005 alone, boosting household income by US$5.7 billion. It also contributed about US$3.5 billion in tax revenues at the local, state, and federal levels. US job creation from ethanol production and capacity construction is expected to reach 203,879 jobs in all sectors of the economy by 2015. As of 2006, the much smaller biodiesel sector employed 6,338, but by 2015, the total is expected to be 26,382. Biofuels are expected to create in total an additional US$200 billion in GDP from 2005-12 and new investment of US$6 billion in renewable fuel production facilities.

JAPAN

SOLUTIONS TAKE-UP

In terms of decarbonising passenger transport, Japan’s focus has been on energy-efficiency in engine design, and the hybrid car has been very successful in Toyota’s and Honda’s domestic markets. Toyota sold 58,000 hybrid cars in Japan in 2005 alone. Cumulative sales of hybrids from all manufacturers had reached 196,800 in 2004, up from 132,500 in 2003. These car companies have been highly successful globally, with their efforts on energy-efficiency and hybrid technology a major contributor to their overall profitability – Toyota’s net profits rose by 17% for the year to 31 March 2006, and Honda’s by 23%.

DRIVEN BY

— The introduction of fuel-efficiency regulations in 1999, which mandated automakers to improve mileage by 23% by 2010 compared to 1995 levels.
— New regulatory proposals made in December 2006 by the Ministry of Economy, Trade and Industry and the Ministry of Transport to increase fuel efficiency standards by a further 23.5% on average by 2015 (current emissions rates stand at 138g/km).
— A new policy target for 40% of cars to be able to be run on biofuels such as a biofuel blend called gasohol by 2020 – a stretch target, given the current low level of provision and take-up of this fuel.

CREATING DOMESTIC VALUE

Domestic companies Toyota and Honda have capitalised worldwide on their hybrid-technology development. For example, although hybrids make up only 3% of Toyota’s overall world sales, the buzz resulting from their success has added to Toyota’s public image as a trend leader. Toyota believes that, 10 years from now, most new cars will run on a version of a hybrid-engine.

The automotive industry is a core industrial sector for Japan. In 2004, auto manufacturing shipments accounted for 16.1% of total manufacturing, reaching JPY45 trillion (US$40 billion) in value. Automobile-related employment in Japan totals 4.86 million, with 7.7% of Japan’s working population employed directly or indirectly in the car industry. In 2005, motor vehicle production increased for the fourth year running, reaching 10.8 million units, up 2.7% on the previous year. Automotive exports rose 8.3% in 2005.

Biofuels employment, on the other hand, is currently negligible, with fewer than 100 jobs in this area. Japan currently has very little domestic biofuel manufacturing capacity, and therefore has to import its ethanol from Brazil. However, the government aims to subsidise investment in biofuels plants to kick-start its domestic industry.
FACT: MAJOR AUTO MAKERS ALL PLAN FOR COMMERCIAL FUEL CELL CARS BY 2015–2020
Looking beyond hybrids, fuel cells potentially represent the next stage in zero-carbon power for mobile applications. A fuel cell creates electricity through an electrochemical process that combines hydrogen and oxygen in the presence of a catalyst, with water and heat the only by-products. Hydrogen can be formed from a fossil-based fuel, such as natural gas or gasified coal, methanol derived from biomass or – in the environmentally best-case scenario – from the electrolysis of water using renewable energy.

GROWTH TO DATE
The commercial market for fuel cell or hydrogen-fuelled cars is still at an early stage, given the technologies’ current economics. The total number of fuel cell cars globally was projected to reach just over 600 by 2006. Although the largest market for fuel cells overall in 2005 was the mobile market, this was supported almost exclusively by government and corporate funding and military contracts. Ballard Power is the biggest maker of fuel cells for vehicles (DaimlerChrysler and Ford have invested US$100 million into the company in a joint venture) but, in common with most companies in the sector, is still not profitable.

GROWTH PROJECTIONS
Among the top ten car manufacturers, GM, Toyota, Ford, DaimlerChrysler and Honda all plan for commercially viable fuel cell cars to be available by 2015, and DaimlerChrysler, Honda and GM believe there will be a mass market by 2020-25. Although Toyota was the first to introduce a fuel cell vehicle, Honda appears to be one step ahead of the industry here. It introduced its second generation model, the FCX, in 2005. This uses a Honda-designed fuel cell stack (rather than one from Plug Power as used in the first model). The company plans to begin leasing an expensive new hydrogen-powered fuel cell car in Japan and the United States in 2008, and to have 50,000 cars on US roads by 2020. Furthermore, Honda is the industry leader in terms of developing home refuelling units. President and CEO Takeo Fukui believes that there will be a sizeable market for a Honda fuel cell car, even with a JPY10 million (c.US$80,000) price-tag. However, before production can be scaled-up, Fukui said there are still some technological challenges to overcome.
Many of the market solutions to support the low carbon economy stem from the well-established financial services industry, which generates approximately 8% of GDP across the OECD countries. The industry has woken up in a big way to the potential for renewable energy and clean technology, and finance is now pouring into these areas. This is enabling much more rapid development of the clean energy and transport technologies than was thought possible only two years ago; as illustrated by the growth figures presented in the previous three chapters. This is of mutual benefit to both sides of the equation, as when low carbon solutions can be made more widely available, take-up increases, and investment returns rise.

In particular, the emerging global carbon market has caught the imagination of the industry, and is undergoing an incredible period of growth, from pretty much a standing start in January 2005 to reach US$30 billion in traded volumes by the end of 2006. It is expected that a scheme similar to the EU emissions trading scheme, so far the major market, will be set up in the US before long. It has, moreover, been predicted that over the next few years, carbon trading will reach the same levels as trading in global commodities, currently a US$100 billion per year market.

Both these sources of finance and investment into clean technologies and carbon mitigation processes have been vital in ensuring that carbon is increasingly correctly priced and they are providing the fuel to drive the global economy towards the brighter future of the low carbon world.

Described in the following pages, are the exciting trends in growth and value creation that smart investors and traders are supporting, from both the worlds of finance and carbon markets.
In the past two years, investment in forms of sustainable energy has grown more rapidly than investment in any other sector. Many alternative investment vehicles have emerged that target sustainable energy financing, and major institutions have now jumped into the fray.

Investors are responding to clear political signals – President Bush’s 2006 State of the Union address, strong European support for action on climate change, and the publication of the Stern Review and the US mid-term elections in late 2006.

In addition, government support for renewable energy in the US and Europe combined was in the order of US$10 billion in 2004. In the US, Canada, Asia and Europe, governments provide R&D funding, tax subsidies, direct and indirect financial support, and the use of market mechanisms.

But ultimately, investors are betting on a long-term shift towards a low carbon economy. Some of the most respected names on Wall Street have been making substantial investments in renewable energy and carbon trading – despite the current administration’s opposition to mandatory controls on carbon. A key element of the largest leveraged buy-out in history – of Texas utility TXU – was a commitment by the private equity buyers to dramatically scale back plans for new coal-fired capacity, instead pledging renewable energy investment and a major demand-side management programme.

It should come as little surprise that fleet-footed venture capitalists are backing technology companies that could win big from efforts to cut energy consumption and greenhouse gas emissions. But when private equity houses and the investment banking community – neither of which are known for their radicalism – follow, it’s clear that a tipping point has been reached.

It is now to be expected that there will be an increasing drive over the next decade from all segments of the industry, particularly those providing project finance and advisory work, to shift funding from a carbon-heavy portfolio to cleaner forms of energy and transport.
GROWTH TO DATE
By 2005, 10% of investment in the energy industry worldwide (estimated to total between US$500-600 billion) was accounted for by renewables and clean energy technologies.\(^{181}\) Total investment in each of our four countries is illustrated in the third graph on the left.

QUOTE: "WHEN I STARTED NEW ENERGY FINANCE, IN 2004, WE SAW US$27 BILLION BEING INVESTED IN CLEAN ENERGY WORLDWIDE. I THOUGHT IT WOULD TAKE UNTIL 2014 FOR US TO SEE US$100 BILLION PER YEAR BEING INVESTED. IN 2006, JUST THREE YEARS LATER, WE TRACKED US$71 BILLION. WE NOW EXPECT TO HIT US$100 BILLION BY 2009. INVESTMENT ACTIVITY HAS DEVELOPED FASTER THAN WE EVER THOUGHT POSSIBLE. THE BIG CHALLENGE FOR THE INDUSTRY IS NO LONGER HOW TO SPUR DEMAND, BECAUSE THERE IS DEMAND OUT THERE IN SPADES – IT IS HOW TO DEVELOP THE SUPPLY CHAIN. THE NEXT GLOBAL INDEX OF OVER 80 QUOTED CLEAN ENERGY COMPANIES HAS GONE UP BY 30% PER YEAR COMPounded FOR THE PAST FOUR YEARS. US$11 BILLION OF PRIVATE EQUITY MONEY WENT INTO THE SECTOR LAST YEAR, AND US$10 BILLION WAS RAISED ON THE PUBLIC MARKETS. THIS IS BIG BUSINESS, THE FINANCIAL PLAYERS HAVE WOKEN UP AND THEY ARE MAKING MONEY."
MICHAEL LIEBREICH, CEO, NEW ENERGY FINANCE

FINANCING STAGES AND MAJOR PLAYERS
For each stage in the life of a new renewable energy or clean-tech company, a different form of financing will be most useful: firstly, venture capital/private equity (VC/PE) investment at the company start-up stage, followed by public equity investment via stock markets, usually to provide expansion capital and thirdly, in some cases, project finance from commercial banks.

VENTURE CAPITAL INVESTMENT
A large number of venture capitalists and financial companies have been benefiting from the fast-rising requirements and returns from renewable energy and clean technology finance.

In 2006, out of total US VC investment of US$21.7 billion, investors put US$917 million – an increase of more than 25% from 2004 – into more than 80 private clean-tech companies.\(^{182}\) In 2006, this had risen to US$2.4 billion.\(^{183}\)

In 2006, clean energy technology VC and PE investment globally exceeded US$7 billion, a 167% increase from 2005.\(^{184}\)

The US is the new clear leader in clean-tech VC. In 2005, from the total global total of VC/PE investments, 118 US companies received funds (totaling US$1.56 billion for the 93 for which data was disclosed). This had risen to 127 companies in 2006 (totaling US$3.63 billion for the 102 for which data was disclosed).\(^{185}\)

Table below shows the top ten US clean-tech VC/PE investors during 2006. Interesting to note is the inclusion of three major US investment banks; the previous year only Goldman Sachs appeared in the top ten.

<table>
<thead>
<tr>
<th>TOP 10 US-BASED VC/PE INVESTORS</th>
<th>TOTAL INVESTED IN 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY CAPITAL PARTNERS</td>
<td>US$1.340M</td>
</tr>
<tr>
<td>KHOSLA VENTURES</td>
<td>US$105.16M</td>
</tr>
<tr>
<td>GOLDMAN SACHS GROUP INC</td>
<td>US$79.70M</td>
</tr>
<tr>
<td>VANTAGE POINT VENTURE PARTNERS</td>
<td>US$76.58M</td>
</tr>
<tr>
<td>CITIGROUP</td>
<td>US$62.74M</td>
</tr>
<tr>
<td>BRICH HILL EQUITY PARTNERS MGMT INC</td>
<td>US$62.40M</td>
</tr>
<tr>
<td>WESTERN MILLING LLC</td>
<td>US$60M</td>
</tr>
<tr>
<td>KLEINER PERKINS CAUFIELD AND BYERS</td>
<td>US$57.70M</td>
</tr>
<tr>
<td>BAIN CAPITAL</td>
<td>US$50M</td>
</tr>
<tr>
<td>MORGAN STANLEY</td>
<td>US$50M</td>
</tr>
</tbody>
</table>

Biofuels and solar have been the hot sectors for VC clean-tech investors. Recently Goldman Sachs joined Royal Dutch Shell as a minority investor in Iogen Corporation, investing US$30 million in the Canadian company, which converts agricultural materials such as straw, corn stalks and switchgrass to ethanol. In 2005, Citigroup’s Sustainable Development Investment Program invested in Balrampur Chini Mills, one of the largest sugar producers in India, a company that intends to expand its ethanol manufacturing capacity.
In the UK, at least US$169.5 million worth of VC/PE investment flowed into 29 UK-based clean technology companies during 2006. Venture financing in Japan, however, is at a much lower level. In 2006, US$3.6 million was raised for one company. The amount invested by Japanese VC/PE entities was also low, at US$15.49 million in total during 2005, (mainly due to the historically credit-based financial system in the country, rather than a capital-based system more suitable for VC) although this increased to US$63.51 million in 2006.

Globally, there are an estimated 100 PE funds focused on clean-tech, up 30-40% from 2005. In 2005 alone, five clean-tech fund-of-funds were launched or closed – an unprecedented number. Furthermore, in October 2006, the UK-based Low Carbon Accelerator Fund became the first listed private equity fund to invest solely in private firms in the green energy sector.

And the pioneers have, thus far, been rewarded. As of 2005, 19 venture capitalists investing in 57 clean technology firms in Europe had made an average annual return of 86.7% on their investments since 1999 – the sample represents 30% of all clean-tech companies in Europe which have received VC funding. Illustrating the extra benefits from VC in clean-tech, in Europe (as of the end of 2003), the average rate of return for a 10-year VC investment across all sectors was only 8.3% (although the US market showed returns of 25.4%, probably as US venture capital funds benefited more than their European counterparts from the high asset prices during the technology investment boom).

Venture investing also creates jobs, as well as profits. Research has shown that for every US$100 million invested into VC/PE-backed companies, 2,700 new jobs are created and the overall economy receives five times greater impact in related economic growth.

IPOs and Public Equity Investment

Evidence of the growth of the clean energy technology sector can be found in the growing numbers of companies going public, tapping into investor appetite by listing on the world’s stock exchanges.

In October 2005, the London Stock Exchange hosted its first renewable energy capital markets day. Expectations were for about 30 investors to attend, but instead about 90 came, including some of the biggest institutions in the financial world – such as UBS, Merrill Lynch, Barclays and Goldman Sachs.

In fact, by 2006, virtually all the major global investment banks were involved in clean energy IPOs: Morgan Stanley and Credit Suisse acted for First Solar (listing on NASDAQ); Lehman Brothers and Deutsche Bank for Canadian Solar (also on NASDAQ); Morgan Stanley and Lehman Brothers for VeraSun (listing on New York Stock Exchange); Deutsche Bank and Citigroup for CropEnergies (listing on Frankfurt), and Goldman Sachs for Aventine (listing on NYSE).

By 2005, the total market valuation of renewable energy companies had reached US$50 billion, double the 2004 estimate, following several high-profile IPOs. The next year, some US$10.3 billion of new equity was raised by publicly quoted clean energy companies, with Europe’s total reaching US$5.6 billion.

Solar companies raised the most on the public markets, at US$5.6 billion, more than double the US$2.1 billion raised in 2005. Biofuels companies were second, raising US$3.1 billion, more than 10 times the amount raised the previous year, including the IPO of VeraSun (the second largest ethanol producer in the US) in June 2006, raising US$419.75 million. Wind IPOs raised US$1.4 billion, compared with US$1.9 billion in 2005.

In Europe, meanwhile, London’s AIM was the venue of 36 IPOs and secondary fundraisings in 2006, totalling more than US$1.4 billion – an increase of 46% on the 2005 total of US$984.1 million.

By the end of 2006, the total market capitalisation of the 50 clean energy companies on AIM had reached US$7.8 billion. The largest single sector was ‘Carbon Markets’, with four large constituents totalling US$1.4 billion in market capitalisation, and delivering an average annualised return of 57.7%. Solar companies totalled less than biofuels, hydrogen/fuel cells and wind power, at US$1.03 billion, but had the second highest return of all the sectors, at 29.1%.
Meanwhile, the world’s project finance houses have not been slow to recognise the opportunities in renewables (particularly wind power), and pretty much all the large – and typically conservative – commercial and investment banks, in Europe, the US and Japan are active in underwriting deals.

To place project finance for renewable energy in context, global project financings reached US$180.6 billion in 2006, a 29.7% increase from 2005. The power sector accounted for US$57.1 billion in 2006, up from US$44.4 billion in 2005. And of that, asset finance for renewable energy reached US$27.9 billion, 15% of total project finance.

The list of top ten banks acting as ‘mandated lead arrangers’ for renewable (and clean-energy) project finance globally is dominated by European institutions, who arranged a total of US$10.9 billion. Japanese institutions only accounted for US$474.28 million in 2006 – roughly split in half between Mitsubishi Corp and Mizuho.

The value attributed to these deals has shown vast growth since the beginning of this decade, as shown in the tables below:

<table>
<thead>
<tr>
<th>Year</th>
<th>Value of Project Finance Deals</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>US$402.68M</td>
</tr>
<tr>
<td>2001</td>
<td>US$781.34M</td>
</tr>
<tr>
<td>2002</td>
<td>US$1,453.39M</td>
</tr>
<tr>
<td>2003</td>
<td>US$1,541.24M</td>
</tr>
<tr>
<td>2004</td>
<td>US$4,008.43M</td>
</tr>
<tr>
<td>2005</td>
<td>US$13,901.3M</td>
</tr>
<tr>
<td>2006</td>
<td>US$13,937.43M</td>
</tr>
</tbody>
</table>

Goldman Sachs has been one of the leaders in North America in this space for a couple of years. The bank has committed to investing US$1 billion in renewable energy and energy-efficiency projects, devising (and participating in) investment structures for renewable energy, alternative fuels, and other environmentally friendly technologies. It also bought Horizon Wind Energy (formerly Zilkha Renewable Energy) in 2004, a wind-development firm currently developing 4,000MW of wind capacity in the United States. Goldman agreed to re-sell it in March 2007 to Portuguese power provider Energias de Portugal, which valued it at US$2.15 billion.

Canada’s RBC is also active in the sector. It has a C$50 million alternative energy technology venture fund, and has financed around 30 wind farms in Canada, the US, the UK, Italy and Ireland. Over 2006, RBC has been involved in much advisory and corporate finance work involving raising debt and equity, M&A work, and setting up funds for large-scale renewable energy projects, as well as its own lending.
To illustrate the type and size of individual deals, recent renewables project financings include:

- A 189MW wind farm at Sault Ste. Marie, Ontario, sponsored by Brookfield Power, for which the lead banks for a US$300 million term loan are Bank of Nova Scotia and RBC Capital Markets. ABN Amro, BMO, Sumitomo Mitsui, Bank of Tokyo Mitsubishi and Fortis Capital were also involved in the deal, which closed in September 2006.

- In October 2006, the 120MW Q7 wind facility off the Dutch coast near Ijmuiden was the first offshore wind park to be project financed. Total financing came to €379 million, arranged by Dexia and Rabobank.

- ‘C-Power’ is the project vehicle for the Thornton bank offshore wind farm, off the coast of Belgium. Dexia is arranging a €100 million financing package for 30MW, and other finance will be raised later for the remaining 270MW. If approved by the Belgian government, the full 300MW site could become operational in 2010. The total investment is about €500 million.

- AndaSol II is a 50MW solar project based in Guadix, Spain, sponsored by ACS Group. Total financing is €300 million (US$396 million) via a 15-year term loan, led by WestLB, BNP Paribas and Banco Sabadell, which closed in January 2007. The same sponsor is developing the La Boga wind portfolio at various locations in Spain. The lead banks for this are Natexis and La Caixa for a term loan of €350 million (US$462 million) and syndication was to take place in the first quarter of 2007.

- Airtricity’s 90MW Sand Bluff wind farm in Sterling County, Texas is being led by HVB Bank and syndication was for US$140 million.

- Lone Star Wind (FPL Energy) is developing a wind farm at Horse Hollow II and III, Red Canyon, in Taylor, Nolen, Borden, Garza and Scurry Counties, Texas. This is being funded by Mizuho, BayernLB and Fortis Capital, for a total of US$600 million over a 15-year term.
FACT:

US$71 BILLION — THE TOTAL INVESTED IN RENEWABLE ENERGY IN 2006
The global effort to reduce greenhouse gas emissions, by way of the 1997 Kyoto Protocol, has created an entirely new commodity: the emission reduction. The introduction of ‘cap-and-trade’ schemes places a value on a tonne of carbon dioxide (CO$_2$) either avoided or stored, incentivising governments, companies and even individuals to reduce emissions, knowing that their reductions have value.

Carbon markets in and of themselves do not reduce emissions. But by putting a price on emissions reductions, they encourage companies to make investments to reduce emissions. At the same time, they provide those with a high cost of emissions abatement a way of meeting reduction targets without going out of business.

Investors, entrepreneurs and market intermediaries have not been slow to recognise the potential of these markets. Companies have sprung up to generate emissions reductions, funds have been launched to invest in reduction projects, and a whole new sub-sector of the financial services industry has been created to analyse, trade and broker this new market. And, as the market grows, more and more established banks and trading houses are bringing their experience to bear.

The Kyoto Protocol will establish a global trading scheme for its first ‘commitment period’ (2008-12), and includes two markets for credits from greenhouse gas reduction projects – the Clean Development Mechanism (CDM) and Joint Implementation (JI), which relate to projects in developing countries, and the industrialised world, respectively. However, most trading to date has been in ‘pre-Kyoto’ regional, national and voluntary schemes, such as in the EU.

A further notable area of growth has been the offsetting of carbon emissions through investment in GHG emission reduction projects, often as part of a voluntary emissions reduction commitment. Furthermore, the concept of carbon neutrality – achievement of a net zero-carbon footprint through a combination of direct emissions reductions and offsetting – has been taken up by many companies. As part of an integrated strategy, this can provide an attractive way for organisations to cut internal and supply-chain related emissions and engage with the public. It is expected that the market for the associated low carbon and carbon neutral products will grow significantly in the coming years.

As the voluntary approach has become an increasingly common feature of institutional and individual responses to climate change, there has been a proliferation of companies offering carbon offset and related services.
MARKET GROWTH AND VALUE CREATION

GROWTH TO DATE

EU ETS
The European Union Emissions Trading Scheme (EU ETS) is by far the largest regional carbon market. Created in January 2005, it accounts for 65% of the total traded volume worldwide.44 It was worth US$8.2 billion in 2005 and traded over US$19 billion during 2006.45 This compares with trading in the New South Wales emissions trading scheme in 2005 and 2006 of US$57.2 million (at 2005 currency prices) and US$217 million respectively.46 For the Chicago Climate Exchange (CCX), which operates on a semi-voluntary basis, traded values in 2005 rose from US$2.8 million to US$36.5 million in 2006.47

The first forward trades of EU Allowances (EUAs) under the EU ETS between European companies were contracted in 2003, when less than one million tonnes were traded, followed by about nine million tonnes in 2004. Since then, EU ETS trading volume has grown dramatically – reaching 322 million tonnes in 200548 and 817 million tonnes in 2006.49 The EU market is now split roughly in half between direct or brokered trading and commodities exchanges. Among the six existing exchange platforms, the European Climate Exchange (ECX) has 70-80% of the market share.

FLEXIBLE MECHANISM PROJECTS

In addition to the trading schemes, there were about 614 CDM and JI project-based transactions between 1996 and the end of March 2006. JI only accounted for about 4% of these, or about 2% of the entire volume of the carbon markets. However, CDM trade accounts for 27.2% of total carbon market volume.50 In 2005, 374 million tonnes of CO₂ were traded, virtually all from CDM projects, at a value of US$2.7 billion, and the United Nations Framework Convention on Climate Change (UNFCCC) Secretariat – which oversees carbon trading under the Kyoto Protocol – is forecasting that as many as 1.8 billion tonnes of credits may be created by the end of 2012 under the CDM.

CARBON FUNDS
The first major carbon fund – the Prototype Carbon Fund (PCF) – was set up by the World Bank in January 2000. The Bank has since set up eight other funds. Fifty-seven funds in total were in existence as of March 2007, with a total of €8.5 billion (public €2.6 billion, private €5.9 billion) under management. Two-thirds of private carbon funds are managed in London and New York, and growth opportunities for carbon asset managers in these two cities are significant.

VOLUNTARY CARBON MARKET

This market is experiencing significant growth as companies not subject to mandatory caps on carbon emissions decide voluntarily to offset some or all of their emissions for reputation-associated reasons or to mitigate risks. Individuals are also now increasingly eager to go down the offset route, particularly for air travel.

GROWTH OF SERVICE PROVIDERS

To document market growth and economic benefit in all these areas, The °Climate Group undertook a survey with a number of market participants over the months of May, June and July 2006 in association with London Climate Change Services, a membership organisation for companies involved in the carbon markets. The study identified a wide range of activities carried out under the umbrella of carbon services, as can be seen from the graphic opposite: Carbon Service Companies – Primary Areas of Specialisation.

The survey also demonstrated significant value creation linked to the carbon markets. Thirty companies began operating in this market within the 2000-05 period, compared to 14 in the previous decade. In terms of employment, for 41.7% of companies surveyed, carbon/clean energy work makes up 75-100% of their business and 45.7% stated that the percentage of their business from this area has increased significantly over the past five years.

Although in all companies surveyed, the number of employees specialising in climate change services remains relatively small (up to 25 maximum), 62.5% of companies stated that their staff numbers had increased significantly over the past five years and 55.1% of companies further predicted that this trend would continue over the next five years. None thought that numbers would decrease.

The average of reported revenues generated from the companies’ carbon/clean energy business has shown massive growth, from £189,000 in 2003 to £3.5 million in 2006, as shown in the table below.

AVERAGE REVENUES FROM PROVISION OF CARBON SERVICES

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006 Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>£50,000-£1m</td>
<td>£125,000-£3m</td>
<td>£20,000-£5m</td>
<td>£5,000-£8m</td>
</tr>
<tr>
<td>Value</td>
<td>£189,285.71</td>
<td>£395,238.10</td>
<td>£1,361,666.67</td>
<td>£3,537,500.00</td>
</tr>
</tbody>
</table>

SOURCE: THE °CLIMATE GROUP/LCCS SURVEY, 2006
MAJOR PLAYERS

Major players in the carbon markets can be broken down into four main categories:

- Traders
- Brokers
- Carbon asset managers/CDM project developers
- Carbon offset providers.

TRADERS

There are currently around 30-40 regular participants trading ‘over-the-counter’, mainly European utilities, multinational oil companies and financial institutions, although other countries and sectors (cement, pulp and paper, steel, etc.) are beginning to enter the market. Transactions are typically 10,000-100,000 tonnes of CO\textsubscript{2}e in size, although some can reach up to one million.209

There is also substantial trading on the futures markets. Futures trades are carried out on a regulated exchange, via an electronic trading platform. For example, 70 businesses including Barclays, BP, Calyon, E.ON UK, Endesa, Fortis, Goldman Sachs, Morgan Stanley and Shell trade on the European Climate Exchange.

The International Emissions Trading Association (IETA) has a membership of 128 companies worldwide, including London, currently the global centre for trading in emissions allowances. The London-based ICE Futures market lists a total of 106 companies that trade directly or provide financial clearing services to clients. Of these, 64 offer such services to emissions-trading clients.210

In addition to those industrial companies covered directly by the EU ETS who already had their own trading desks, as the markets evolved in late 2004 and early 2005, financial institutions began to participate, either trading on their own account or, more commonly, acting for clients without trading capabilities. Barclays Capital (UK), Morgan Stanley (US/UK) and Fortis Bank (Belgium) were the main financial players early on in the evolution of the market.211 Banks participate in the carbon market primarily by trading carbon as they would any other commodity, but also by providing advisory services and by investing in carbon offsetting projects.

Barclays was the first UK bank to set up a carbon trading desk – employing Louis Redshaw in May 2004 – and is now the biggest banking participant, having traded over 160 million EU Allowances by the end of 2006.

As we have seen in renewables finance, blue-chip investment banks such as Merrill Lynch and Goldman Sachs are moving into the carbon market. In 2005, the London offices of JPMorgan and Morgan Stanley both hired emissions traders and Merrill Lynch began trading allowances in the second quarter of 2005.

By 2006, it was clear that all major financial institutions had been rapidly developing new carbon-focused products and services. Even hedge funds began to be visible in the market.212 In Europe, HSBC, Barclays, RBS, Lloyds TSB, Standard Chartered, Bank of Ireland, Unicredit Group (which owns the German bank HVB), ING, Fortis, UBS, BNP Paribas, Société Générale, Credit Suisse and Deutsche Bank all have various products to serve the carbon market.

US banks with such services include Morgan Stanley, Merrill Lynch, Wachovia, State Street, Wells Fargo, Citigroup, Goldman Sachs and JPMorgan Chase as well as RBC in Canada. Active Japanese banks include Nomura, Mitsubishi UFJ and Mizuho.213

BROKERS

It is estimated that roughly 40% of trading in the EUA market is undertaken via brokers (the remaining 60% via the electronic exchanges). The project-based carbon market in particular relies heavily on brokerage due to the bespoke nature of many transactions.214

There are at least ten brokerages providing GHG credit brokering and carbon mitigation consulting services to companies, and matching sellers and buyers of carbon credits. Major pure emissions players include Evolution Markets, the world’s highest volume emissions broker (also covering SO\textsubscript{x} and NO\textsubscript{x}), and the pioneer CO\textsubscript{2}e (now called CantorCO\textsubscript{2}e). Now that the market has showed signs of maturing, large-scale commodity brokers such as Tradition Financial Services have moved aggressively into the field. Overall, the revenues in 2006 for a typical emissions broker increased year-on-year compared to 2005,215 although over the past two years the commissions they charge have fallen from as much as 7.5% of the value of a transaction to as little as 0.2%, indicating the growing competition in this market.216

LOUIS REDSHAW, HEAD OF ENVIRONMENTAL MARKETS, BARCLAYS CAPITAL
The reported global value of carbon funds (or funds investing in carbon credits) reached US$8.5 billion as of the end of 2006. This money has been raised directly from governments – some of whom have outsourced carbon credit buying to help meet their national Kyoto targets – from industrial companies, who will also need carbon credits, and from investors chasing attractive financial returns. Public and private money is mainly managed from the US and UK respectively – see tables to the left.

The value in the role of a carbon asset manager is in being able to leverage collective funds to achieve more cost-effective emission reductions, in helping to diversify the risks associated with a portfolio of carbon credits, and in reducing the transaction costs of participating in the carbon markets for fund participants. The revenues for carbon asset managers come from a variety of sources including arbitrage between the prices of different carbon instruments, and fund management fees. Given the very private nature of the funds, typically such numbers are not disclosed and are difficult to assess with any precision. The typical fund manager fee varies between 5–15% so, for a fund of €300 million, fund revenue based on fees alone would be around €30 million.

QUOTE: “The carbon fund sector continues to attract substantial new investment with much of the new money coming from private investors. This signals a strong belief amongst investors that the challenges of climate change are becoming more severe and that governments and corporations alike are prepared to take the steps necessary to address the problem. The combination of these factors is leading to significant opportunities for businesses able to provide cost-effective solutions to reducing greenhouse gas emissions.”

GUY TURNER, DIRECTOR, NEW CARBON FINANCE

The following table lists the top six most significant carbon fund managers currently managing both public and private funds, by descending order of size of funds under management.

<table>
<thead>
<tr>
<th>MANAGER</th>
<th>APPROX. ASSETS UNDER MANAGEMENT AS OF 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Bank</td>
<td>US$1.3 billion</td>
</tr>
<tr>
<td>Climate Change Capital</td>
<td>US$1.15 billion</td>
</tr>
<tr>
<td>Natsource Asset Management</td>
<td>US$670 million</td>
</tr>
<tr>
<td>EEA FM (Trading Emissions)</td>
<td>US$600 million</td>
</tr>
<tr>
<td>EFRD</td>
<td>US$265 million</td>
</tr>
<tr>
<td>IXIS Environment & Infrastructures</td>
<td>US$190 million</td>
</tr>
</tbody>
</table>

OTHER NOTABLE ENTITIES INCLUDE:

- **Climate Change Capital** is the leading private investment banking group in this area – it set up the largest private sector carbon fund in the world in the third quarter of 2006, which it hoped would top US$1 billion, and also offers advisory and corporate finance services.
- **Natsource Asset Management**, formerly operating as a broker, is one of the world’s largest private sector carbon asset management companies.
- **Trading Emissions** – set up in 2005 and listed on AIM in 2006, the company is an investment fund focused on investing in environmental instruments, but particularly focusing on CDM and JI credits.
FACT:
CARBON OFFSET PROVIDERS

The voluntary market, although smaller than the regulated one, is growing dramatically and a non-exhaustive list of providers already reaches over 100 entities, many based in the UK, continental Europe or the US. Other companies jumping on board include the Bank of New York which, in late 2006, set up a voluntary CO₂ registry, seeing the opportunity for standardisation and simpler transactions. Carbon credits in the system will be verified by third parties. Similar plans include California’s Climate Action Registry.

To illustrate the growth, 18 offset companies capitalising on the growing trend for voluntary carbon emissions reductions, were identified in a 2006 paper by Context. Ten of these are based in the UK, five in the US and Canada, two in Europe and one in Australia. Of these 18, five were set up in the 1990s and nine during this decade, and there has been a clear move from a focus on forestry projects, to a much wider range of projects, many of them energy technology-based.

In a consumer’s guide to carbon offsets published by the organisation ‘Clean Air-Cool Planet’, the top-rated providers were named as AgCert/Driving Green (Ireland), atmosfair (Germany), CarbonNeutral Company (UK), Climate Care (UK), Climate Trust (US), co₂balance (UK), NativeEnergy (US) and Sustainable Travel/MyClimate (US). The top 10 global companies by volume offset (as of end 2005) are listed in the table below.

GROWTH PROJECTIONS

A development of note is the desire of some developing countries, particularly Brazil, India and China, to create local exchanges for carbon credits. Overall, the carbon markets are demonstrating that, with credible and stringent policies in place to reduce GHG emissions, the markets will continue to seek out myriad ways to reduce emissions wherever those opportunities may be.

<table>
<thead>
<tr>
<th>TOP TEN GLOBAL COMPANIES IN THE VOLUNTARY CARBON MARKET</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANY</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>THE CLIMATE TRUST</td>
</tr>
<tr>
<td>CLIMATE CHANGE CONSULTING (3C)</td>
</tr>
<tr>
<td>MY CLIMATE</td>
</tr>
<tr>
<td>BONNEVILLE ENYLF FOUNDATION</td>
</tr>
<tr>
<td>THE CARBONNEUTRAL COMPANY</td>
</tr>
<tr>
<td>CARBONFUND.ORG</td>
</tr>
<tr>
<td>CLIMATE CARE</td>
</tr>
<tr>
<td>PRIMA KLIMA</td>
</tr>
<tr>
<td>TERRAPASS</td>
</tr>
<tr>
<td>SOLAR ELECTRIC LIGHT FUND</td>
</tr>
</tbody>
</table>

The financial sector has also sent strong signals that it expects the GHG market to grow dramatically in strength and size, given the imminence of the first Kyoto compliance period, political moves in the US towards regulation of carbon emissions and the likelihood of a global cap-and-trade regime. In 2006, Governor Schwarzenegger signed California legislation imposing an emissions cap on utilities, refineries and manufacturing plants, the first in the US, with a goal of cutting greenhouse gases to 1990 levels by 2020. At the end of February 2007, the governors of Arizona, California, New Mexico, Oregon and Washington state signed an agreement to set up a regional cap and trade scheme, the Western Regional Climate Action Initiative.

QUOTE: “IN EUROPE THE EU ALLOWANCE MARKET IS STILL THE MAIN GAME IN TOWN, ALTHOUGH MANY COMPANIES ARE INCREASINGLY DEVELOPING STRATEGIES FOR PROCURING (PROJECT-RELATED) CARBON CREDITS. IN THE US, THE MARKET IS STILL IN ITS INFANCY ALTHOUGH VOLUMES FINALLY APPEAR TO BE PICKING UP IN THE CHICAGO CLIMATE CHANGE (CCX). THE ATTENTION IN THE US IS, HOWEVER, RAPIDLY SHIFTING FROM THE VOLUNTARY CCX TO MANDATORY SCHEMES – WE EXPECT EMISSION TRADING ACTIVITY TO TAKE OFF IN THE US IN 2009 AS A RESULT. EUROPEAN MARKET INTERMEDIARIES WILL BE WELL PLACED TO CAPTURE PART OF THIS MARKET THANKS TO THEIR EARLY START.”

ABYD KARMALL, DIRECTOR OF CLIMATE CHANGE STRATEGIES, ICF CONSULTING

On 26 October 2006, Morgan Stanley announced that it will earmark US$3 billion for investment into global carbon markets and low-emissions energy projects over the next few years. In March 2007, Bank of America announced a US$20 billion environmental programme, including investment in carbon trading.

Goldman Sachs is already a major trader in the EU ETS. It is also set to be a key player in US emissions markets such as the Regional Greenhouse Gas Initiative, which involves several north-eastern US states, and a separate scheme in California, which are both set to launch by the end of the decade. In addition, illustrating the potential growth in the Exchanges, in September 2006 Goldman Sachs took a 10% stake, worth US$23 million, in Climate Exchange, the UK AIM-listed parent of the ECX and the CCX, increasing this stake to 19% in January 2007.215
Banking on a low carbon future

Barclays is proud to have the opportunity to sponsor this important report on the move towards a low carbon economy. 2006 was a watershed year for the issue of climate change. Thanks to high profile events such as Al Gore’s film ‘An Inconvenient Truth’ and the publication of the Stern Report, there is now more public awareness than ever before and a growing impetus to take action.

Over time, the impacts of climate change will strike at every aspect of our business. This threatens to affect not only the economic stability of our customers but also our own operations around the world. We see climate change as a significant business opportunity to support our customers in the gradual transition towards a lower carbon economy.

This is why we are working hard to reduce our own carbon footprint and investing in the development of products and services that can help our customers do the same.

“I find it motivating, and I know that thousands of colleagues across Barclays find it motivating, to know that Barclays is responsible in its approach to the environment and climate change. And it’s right that we should be.”

John Varley
Group Chief Executive, Barclays Bank PLC.

Carbon and Commerce

Barclays was the first UK bank to set-up a carbon-trading desk and today we are the most active trader in the EU Emissions Trading Scheme, winning several industry awards including Best Trading Company in the Environmental Finance Awards 2006. We see emissions trading as an important area of business for us and one where we can help our clients manage their emissions risks. We are proud to have been at the forefront of emissions trading since the inception of the EU ETS and to have played a leading role in its continued development.

Barclays also plays an active role in the development of the renewable energy market in the UK and Europe. We have provided long-term finance for over 2,600MW of renewable generating capacity, including onshore wind farms, landfill gas extraction, biomass and bio-diesel conversion plants – enough to generate electricity to power nearly 1.4 million homes each year.

Shrinking our carbon footprint

Barclays made its UK operations carbon neutral earlier this year, offsetting 223,000 tonnes of CO\(_2\) from our energy use and business travel.

The first and most important step to achieving carbon neutrality is reducing our emissions. In 2006, Barclays cut its UK energy consumption by 5% per employee and over the next five years we aim to further improve our performance through a multi-million pound energy-efficiency investment programme.

Secondly, we are buying more renewable energy. 50% of our UK electricity consumption is now obtained from renewable sources, avoiding up to 125,000 tonnes of CO\(_2\) a year being emitted – the equivalent of the annual CO\(_2\) emitted by 9,000 homes.

For the CO\(_2\) we cannot avoid emitting, we have offset by investing in sustainable energy projects and community-based energy-efficiency schemes in South Africa, India and China.

To help us negotiate some of the obstacles we face, we seek positive engagement with external organisations. One example is our work with the UK Social Investment Forum on a project aimed at accelerating the shift to the low carbon economy by using asset finance, project finance and lending. Barclays works with a number of other companies and organisations including the International Emissions Trading Association, The Climate Group and Business in the Environment.

We aim to make a valuable contribution in identifying the commercial opportunities that the emerging low carbon economy will present and importantly ways to overcome barriers so that everyone in society takes positive action.

www.barclays.com/climatechange

Banking on a low carbon future

Barclays Carbon Trading

The real futures market...

Looking back from 2106 our great, great-grand children will see the establishment of the European Union’s Emissions Trading Scheme as a milestone in ensuring sustainable future for the World.

But for now, Barclays Capital continues to establish itself as the leading intermediary in the emissions market; applying the full range of our commodity trading and risk management expertise.

To find out more about emissions trading opportunities contact our team on: 020 777 35142 or emissions@barcap.com
GLOSSARY OF TERMS

AC
Air-conditioning.

AIM
London’s Alternative Investment Stock-Market.

BIOPEELS
Fuels made from processing biomasses or metabolic by-products, such as plant oils or animal waste; the liquid versions are used in transport applications.

CCL
Climate Levy. A UK tax on fossil fuel use.

CDM
Clean Development Mechanism. Defined in Article 12 of the Kyoto Protocol, the CDM allows industrialised countries with emission reduction targets to invest in emission-reducing projects in developing countries and take credit for any emissions reduced. Such credits are known as Certified Emission Reductions (CERs). CDM projects are also intended to contribute to the sustainable development of the host country.

CHP
Combined Heat and Power, also known as cogeneration of heat and electricity from the same fuel source.

CO
Carbon Dioxide, the principal greenhouse gas.

CO2
Carbon dioxide equivalent. A unit, measured in tonnes, that allows emissions of non-CO2 greenhouse gas emissions to be expressed as if they were CO2 emissions, using global warming potential coefficients to make the conversion.

Defra
UK Government Department of Environment, Food and Rural Affairs.

DIGESTER GAS
Produced during the anaerobic treatment of waste sludge and is comprised of methane and carbon dioxide; it has about 60% of the energy value of natural gas.

EBF
An ethanol-based biofuel, comprising 85% ethanol and 15% gasoline.

ESCOS
Energy Services Company.

EU
EU Allowance. The tradeable commodity created within the EU ETS.

ETS

FUEL CELL
An electrochemical energy conversion device. It produces electricity from external supplies of fuel (the anode side) and oxidant (on the cathode side). These react in the presence of an electrolyte. Fuel cells can operate virtually continuously as long as the necessary flows of reactants and products are maintained. Fuel cells differ from batteries in that their reactants must be replenished, while batteries store electrical energy chemically in a closed system. Many combinations of fuel and oxidant are possible. A hydrogen cell uses hydrogen as fuel and oxygen as oxidant. Other fuels include hydrocarbons and alcohols.

GHG
Greenhouse gas.

GTC
Gigatonne of Carbon (one billion tonnes of carbon).

GWh
Gigawatt of power (one billion watts).

HVAC
Heating, ventilation, and air conditioning.

ICE
Internal Combustion Engine.

INTERTANK
The Intercontinental Exchange company operates a leading global, electronic marketplace for trading both futures and OTC energy contracts.

IPCC
Intergovernmental Panel on Climate Change. This is the body established by the World Meteorological Organisation (WMO) and the United Nations Environment Programme (UNEP) in 1988 in order to assess the scientific, technical and socio-economic information relevant to understanding the scientific basis of risk of human-induced climate change, its potential impacts and options for adaptation and mitigation.

IPOT
Initial Public Offering.

IR
Inflation Reversion.

Mandated Lead Arranger
A bank in charge of organising a syndicated loan.

MW
Megawatt.

MWH
Megawatt hour. A Megawatt corresponds to a million watts in power capacity, and Megawatt hours describes the amount of power in Megawatts generated over a particular period of time.

NADRA
US-based electronic stock market. The name was originally an acronym for National Association of Securities Dealers Automated Quotations system. It was founded in 1971 by the National Association of Securities Dealers.

NITROUS OXIDE (N2O)
Powerful greenhouse gas emitted through soil cultivation practices, especially the use of commercial and organic fertiliser, fossil-fuel combustion, nitric acid production, and biomass burning. One of the six greenhouse gases to be curbed under the Kyoto Protocol. The global warming potential of N2O is 296 times that of CO2.

NYSE
New York Stock Exchange.

OECD
Original Equipment Manufacturer.

PEFC
Phosphoric Acid Fuel Cell.

PE
Private Equity.

PFM
Also known as Asset Finance, project finance is the financing of long-term infrastructure and industrial projects where project debt and equity used to finance the project are paid back from the cash flow generated by the project, rather than the general assets or creditworthiness of the project owners. The financing is typically secured by the project assets, including the revenue-producing contracts.

PV
Photovoltaics.

R&D
Research and Development.

R&D
Research, Design and Development.

RGGI

RPS
Renewable Portfolio Standard.

PV
Photovoltaics.

SOLAR MODULE
A structure containing c. 40 solar PV cells (capable of generating 1-2 watts of power each).

TWh
Terawatt hours. A Terawatt corresponds to a trillion watts in power capacity, and Terawatt hours describes the amount of power in Terawatts generated over a particular period of time.

UNFCCC
The United Nations Framework Convention on Climate Change. Adopted on 9 May 1992 and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the “stabilisation of greenhouse gas concentration in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system.” The Convention entered into force in March 1994.

US EPA
United States Environmental Protection Agency.

VC
Venture Capital.
66 – Refocus Weekly, “Solar Company moves into no.3 spot with acquisition of Shell assets”, 26 July 2006
67 – American Wind Energy Association
69 – Ernst & Young, ‘Renewable Energy Country Attractiveness Indices Q3 2006’
71 – Union of Concerned Scientists, September 2004
72 – University of California, Renewable and Appropriate Energy Laboratory (RAEL), Putting Renewables to Work, How Many Jobs Can the Clean Energy Industry Generate?, April 2004
73 – University of California, Renewable and Appropriate Energy Laboratory (RAEL), Putting Renewables to Work, How Many Jobs Can the Clean Energy Industry Generate?, April 2004
81 – Sharp, Environmental and Social Report, 2006
85 – UWFCCG, 2005
87 – International Energy Agency
93 – NEM/FMI 2002
94 – Tyndall Centre for Climate Change Research, ESCO Report, November 2005
96 – Tyndall Centre for Climate Change Research, ESCO Report, November 2005
97 – Japanese Association of ESCos
98 – Hoover’s, Matsuhisa factsheet, accessed at: http://www.hoovers.com/matsuhisa#ID:_418733#free-co-factsheet.html
102 – Co-Operative Bank, Ethical Consumerism Report, 2006
112 – IEA, Japan country analysis brief, accessed at: http://www.eia doe.gov/retrieval/abjs/japanerlv.html
117 – FuelCell Today
121 – Goldman Sachs Research, Americas: Energy; Alternative Energy, October 2006
122 – Office of the White House Press Secretary June 25, 2003
125 – Ernst and Young, Renewable Energy Country Attractiveness Indices, Q3 2006
127 – Makower, Perrick and Wilder, Clean Energy Trends 2006, March 2006
131 – Clean Edge
132 – LEDG, May, 2005
135 – Clean Edge
139 – Automotive business review.com, June 30 2006
140 – Freedomia Group, World Hybrid-Electric Vehicles, December 2006
ACKNOWLEDGEMENTS

For specific support of this publication
The °Climate Group would like to thank
Barclays Bank plc. Barclays is a major global
financial services provider, with a large
international presence in Europe, the USA,
Africa and Asia. It is engaged primarily in
banking, investment banking and investment
management. Barclays is one of the largest
financial services companies in the world by
market capitalisation. It has been operating
for over 300 years, with 25 million
customers and 118,000 employees
in over 60 countries.

For their contribution to this publication,
we thank: Jake Burnyeat, Green Peninsula,
Anthony Hobley, Chair of LCCS, Abyd
Karmali, Director of Climate Change
Strategies at ICF Consulting, Michael
Liebreich, CEO, and the staff of New
Energy Finance, Mark Nichols, Editor of
Environmental Finance, Louis Redshaw,
Head of Environmental Markets at
Barclays Capital, Guy Turner, Director at
New Carbon Finance and Shelagh Whitley,
Senior Consultant, Energy for Sustainable
Development.

The °Climate Group recognises and
thanks its supporters: BP, BSkyB, Bullitt
Foundation, CM-CIC Securities, DOEN
Foundation, Michael Edge, Energy
Foundation, Esme Fairbairn Foundation,
Garfield Weston Foundation, Richard and
Rhoda Goldman Fund, Goldman Sachs,
HDR, HSBC, JPMorgan Chase Foundation,
MacArthur Foundation, MSST Foundation,
Oak Foundation, Robertson Foundation,
Rockefeller Brothers Fund, Rockefeller
Family Fund, Anita and Gordon Roddick,
Gary Ross and Allison Thomas, Shell
International, Swiss Re, UK Department
of Environment, Food and Rural Affairs,
UK Foreign and Commonwealth Office,
UN Foundation, WWF-UK.

We are also grateful for the ongoing
commitment of our members; ABN AMRO,
AIG, Alcan Inc, Allianz Group, Arup, Austin
Energy, Baker & McKenzie, Barclays Bank
plc, BP, BSkyB, BT, State of California,
Catalyst, Cheyne Capital Management,
State of Connecticut, Duke Energy, Greater
London Authority, HDR, HSBC Holdings plc,
Interface, Johnson & Johnson, JPMorgan
Chase, State of Maine, Province of Manitoba,
Man Group, Commonwealth of Massachusetts,
Munich Re Group, MWH, State of New York,
News Corporation, Government of Ontario,
Province of Quebec, Severn Trent, Starbucks,
Swire Group, Swiss Re, Timberland, State of
Victoria and Virgin Group.

Designed by Browns/London
www.brownsdesign.com

Illustration by Lucy Vigrass
www.peepshow.org.uk

ABOUT THE °CLIMATE GROUP

The °Climate Group is an independent, non-
profit organisation dedicated to accelerating
the international uptake of corporate and
government best practice in emissions
reductions. We have offices and charitable
status in the US, Europe and Australia, and
this year will expand into India and China.

Proactive companies, states, regions and
cities around the world are demonstrating
that the cuts in greenhouse gases required
to stop climate change can be achieved
while growing the bottom line. Using
the work of these leaders as a catalyst,
The °Climate Group strives to accelerate
international action on climate change with
a new strong focus on practical solutions.

Since launching in 2004, we have
developed an interlocking programme of
leadership groups, research and publications,
media engagement, and high-impact events.
Our coalition of member companies, cities
and sub-national governments has
demonstrated that emissions reductions,
while essential, can also be profitable.
We inspire further action and outreach
to implement and support effective strategies
and policies that mitigate climate change.

We also promote the development and
sharing of expertise on how business and
government can lead the way towards a low
carbon economy while boosting profitability
and competitiveness.
THE CLIMATE GROUP

HEAD OFFICE:
THE TOWER BUILDING
3RD FLOOR
11 YORK ROAD
LONDON SE1 7NX
UNITED KINGDOM
T: +44 (0)20 7960 2970
F: +44 (0)20 7960 2971

USA (EAST COAST):
C/O 245 5TH AVENUE
SUITE 2401
NEW YORK
NY 10016-8728
USA
T: +1 (212) 545 5421
F: +1 (212) 545 5462

USA (WEST COAST):
436 14TH STREET
SUITE 1106
OAKLAND
CA 94612
USA
T: +1 (510) 251 2823
F: +1 (510) 251 2835

AUSTRALIA:
LEVEL 39 RIALTO TOWER
525 COLLINS STREET
MELBOURNE
VIC 3000
AUSTRALIA
T: +61 (3) 9617 4329
F: +61 (3) 9614 2103

WWW.THECLIMATEGROUP.ORG

FEEDBACK AND REQUESTS FOR INFORMATION
SHOULD BE SENT TO INFO@THECLIMATEGROUP.ORG